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1 Introduction

The increasing amount of available data and the wish to analyze and react
to this data in real-time led to a wide adoption of stream processing systems
in modern datacenters. Stream processing systems target the processing of
unbound streams of data. These streams are continuous flows of data items
or events originating from various sources ranging from real world sensors over
network metrics to application events such as new tweets on Twitter. Stream
processing systems can then be used to react to certain events, aggregate the
data or to perform arbitrary operations on the stream.

We can roughly differentiate between two key metrics in the performance
of stream processors: latency and throughput. In stream processing system,
we understand throughput as the number of processed data items in a given
time frame. Latency is the time difference from receiving a data item until it is
processed.

Especially for latency-sensitive applications, such as electronic trading, fast
and reliable communication is crucial. In some cases latency increases of only a
few milliseconds can be problematic. Much research [1, 2] focuses on reducing
communication latency by exposing application-level information to the network
which enables the network to better optimize for the problem at hand. We
however argue that the network is often not a major source of latency and a
detailed analysis of the given system often reveal more significant problems.

We take a deeper look into the latency characteristics of Heron, a real-
time distributed stream data processing system developed at Twitter. After
familiarizing with Heron, we quickly noticed unexpected processing latencies. A
very simple application with a low load stream of one data item per millisecond
showed a mean communication latency of up to 80 milliseconds, see Section 5.1,
which is at least an order of magnitude more than expected.

We performed a detailed latency analysis of Heron for light workloads. For
this we extended Heron with custom instrumentation that allows us to see the
latency of the individual components of Heron. We found that configuring
Heron is non trivial and that Heron’s default configuration can cause a very
high latency for some workloads. Further we found that in specific situations
inaccuracies in the underlying libevent [3] library can cause a significant increase
in latency. During the implementation of our instrumentation we also discovered
that Heron does not stop some of its components gracefully and proposed a fix.

We will first look at related stream processing systems. This gives us an
overview of different architectures, communication models and latency charac-
teristics and helps us to put the results into perspective. We will then take a
more detailed look at Heron and its implementation, which is necessary to un-
derstand the added instrumentation. Finally we will use this instrumentation
to analyze Heron’s latency characteristics.
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2 Related Work

In this section we will look into different state-of-the-art distributed stream pro-
cessing systems. We established in the introduction that stream processing
systems consume unbounded streams of data and perform arbitrary operations
on the data items in the stream. Distributed stream processing systems do
exactly the same but in parallel, distributed over some kind of cluster.

The counterpart to distributed stream processing is distributed batch pro-
cessing. The main difference between batch and stream processing systems is,
that batch processing works on a bounded set of data and not on a stream
of data. Otherwise these two share a lot of similarities and encounter similar
problems. That is why there are systems that implement stream processing on
batch processing systems, such as Apache Spark [4], and systems that enable
batch processing on stream processing systems, such as Apache Flink [5].

For most distributed stream processing systems the behavior of an applica-
tion is defined by a logical plan that can be compared to a logical query plan in
a database system, in that it defines on a high level how a stream is processed.
This logical plan is then converted into a physical plan, which defines how the
actual computation is performed and how data is exchanged.

Physical plans and how the computation is performed, vary widely between
different stream processing systems. For the logical plan however, most system
use a Directed Acyclic Graph (DAG). In this context a DAG is a collection of
vertices, that represent computation, and directed edges, that represent data
flow. As the name suggest, DAGs are not allowed to have circles. One notable
exception is Timely dataflow [6], which allows its logical plan to have cycles.

2.1 Apache Flink

Apache Flink [5] both supports stream and batch data processing. It supports a
lot of different APIs, all of these however compile down to a DAG called dataflow
graph.

A Flink cluster consist of two different elements: The JobMaster and multiple
TaskManagers. The JobMaster receives the dataflow graph from the client and
schedules the operators on different TaskManagers. It keeps track of the state
and progress of every operator and stream. In case of a node failure, it will use
the tracked state to recover an earlier checkpoint. The TaskManager acts as a
worker node and provides a number of tasks slot for operators to be scheduled
on.

For data exchange TaskManagers have a direct communication with each
other. Whenever a data record is created by an operator it is put into a buffer.
The buffer is then sent to a consumer, as soon as either the buffer has reached
its maximum size or when a timeout is reached. This allows us to configure
Flink to either achieve low latency or high throughput. This is a fairly common
design and we can see the same design in Heron [7].
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Flink’s latency is considered to be relatively low. While operating at maxi-
mum throughput, Flink can achieve a median latency in the order of ten mil-
liseconds. [8]

2.2 Apache Spark Streaming

Apache Spark started as a research project [4] and was later donated to the
Apache Software Foundation. Spark is in itself not a stream processing system
but rather a general-purpose cluster computing system, with many high-level
tools including GraphX [9] for graph processing, MLlib [10] for machine learn-
ing and Spark Streaming [11], which enables Spark to function as a stream
processing system.

In Spark, users can manipulate so-called Resilient Distributed Datasets [4].
RDDs are collections of Python or Java objects. These collections are parti-
tioned over the cluster and are resilient to node failure. On these RDDs users
can execute operations like map, reduce or filter.

The key idea behind Spark Streaming is to split streaming computation into
multiple batch computations on short time intervals. The data received during
one time interval is stored in a RDD. The user can then execute multiple state-
ful or stateless operations on these RDDs, while treating multiple RDDs as a
stream.

As Spark works on distributed datasets there is not the same notion of commu-
nication as in Apache Flink. Spark achieves high throughput, however latency
is fairly high, usually in the order of several seconds [11].

2.3 Apache Storm

Storm [12] is a real-time fault-tolerant and distributed stream data processing
system, initially created by Nathan Marz at BackType and later acquired by
Twitter.

The basic Storm data processing architecture consists of streams of data items
flowing through topologies. A storm topology is a directed graph where the
vertices represent computations and the edges represent data flow between the
components. Vertices are either spouts or bolts. Spouts are sources of input
data. They typically pull data from queues and generate a stream of data
items, called tuples. Bolts consume this stream of tuples and perform actual
computations on the data. The processed stream is then potentially passed on
to a set of downstream bolts.
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Storm runs on a distributed cluster. Clients can submit topologies to a master
node that is responsible for distributing and coordinating the execution of the
topology. It schedules this topology onto worker nodes. These worker nodes
perform the actual computation. Worker nodes run one or more instances of a
JVM called worker process. Each of these worker processes is mapped to one
topology. In each worker process run one ore more executors, which in turn
perform one or more tasks. In these tasks, the actual work for a spout or a bolt
is done.

Each worker has two additional threads dedicated to routing messages be-
tween workers. A worker receive thread and a worker send thread. The worker
receive thread listens on a TCP/IP port and de-multiplexes incoming packets
and queues the tuples to the incoming queue of responsible executor.

Each executor has two threads. One user logic thread and a executor send
thread. The user logic thread receives the enqueued tuples from the worker
receive thread, runs the actual task and forwards the processed tuple to the
send thread. If the tuple is destined for a task on the same worker, it is directly
sent to the correct executor. Otherwise the tuple is sent to the worker send
thread, which then forwards it to the correct worker downstream.

Storms latency is considered to be low. Results vary depending on the bench-
mark but we can usually expect latencies of a few milliseconds which is even
faster then Flink [8, 13]. Throughput however seems to generally be lower than
that of Spark or Flink [8, 13].

2.4 Apache Heron

Heron [7] is a stream data processing engine developed by Twitter, as a di-
rect replacement for Apache Storm. It tries to improve on it, while still being
backwards compatible. We take more in depth look into Heron in Section 3.

As one key design goal was to maintain compatibility with the Storm API,
Heron’s data model and API is identical to that of Storm. So there are still
tuples that flow through Heron topologies that are identical to Storm topologies.

While the data model remained identical to Storm’s, the architecture was
changed significantly. The main goals were to improve resource allocation, im-
prove scalability and to simplify managing and debugging applications.

Heron splits the task of one of Storms worker process into a Stream Manager
and multiple Heron Instances. A single Heron Instance only runs a single spout
or bolt task and it runs in its own JVM. The Stream Manager on the other
hand handles all communication. Instances only communicate with its local
Stream Manager and do not have to handle routing of the data tuples they
produce. The Stream Manager looks at all tuples it receives and sends them to
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the correct next Stream Manager. This reduces the number of connections and
should improve scalability of the overlay network.

Heron claims to have achieved higher throughput and even lower latency then
Storm [7].

2.5 Dhalion

Dhalion [14] is a system that provides self-regulation capabilities to underlying
streaming systems. It was implemented on top of Twitter Heron. There are
other systems that provide similar capabilities, such as DS2 [15] that enables
auto scaling capabilities on Apache Flink [5] and Timely Dataflow [6].

Dhalion consists of three major components, the Health Manager, the Action
Log and the Action Blacklist.

The Health Manager is a process that periodically invokes a policy, identifies
potential problems and tries to resolve them. Dhalion differentiates between two
different groups of policies: Invasive and non-invasive policies. Invasive policies
actually react and change the topology (e.g. parallelism change). Non-invasive
policies do not change the topology, but usually alert the user.

The Health Manager can execute multiple non-invasive policies but only one
invasive policy at a time, as multiple invasive policies could result in conflicting
actions.

The Action Log stores the actions taken by the Health Manager. This can be
used for debugging and tuning a particular policy.

The Action Blacklist stores a set of actions and corresponding diagnosis that
did not produce the expected outcome. These actions will not be repeated for
a similar diagnosis. After an action was taken by a policy, the Health Manager
evaluates the action that was taken. The system tracks the ratio of the number
of times a particular action has not been beneficial. When the ratio is higher
than a configured threshold, the diagnosis-action pair is placed in the Action
Blacklist.

Before executing a resolver, the Health Manager checks if the action is al-
ready in the blacklist and does not invoke it if it is.

2.6 Photon

Photon [16] is not a general purpose stream processing system. It is designed
to merge two log streams, similarly to a join operation in a RDBMS. At Google
this system is used within the Google Advertising System to join streams of
events such as web search queries and user clicks on advertisements. Photon
provides low latency and datacenter-level fault-tolerance.
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We look at the specific problem of joining two streams, web search queries
and user clicks on advertisements. The system can also be used to join other
streams with similar properties.

The same Photon pipeline is deployed in different datacenters. Each pipeline
consists of three major components. The Dispatcher that reads user clicks
on advertisements form a click log and then feeds them to the Joiner. The
Joiner then finds the corresponding search query form the EventStore, a store
that provides efficient lookup for these queries. Duplicates are avoided using a
distributed key-value store called IdRegister.

Each piece of the topology communicates using RPCs. This provides lower
latency than using a shared disk to communicate.

The end-to-end 90th-percentile latency of Photon is under 7 seconds [16].
We need to keep in mind that the round-trip time between their datacenters is
up to 100ms. But throughput and fault tolerance seemed to have been more
important than strong real-time guarantees.
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Figure 1: RTAC Topology

3 Heron

Twitter heavily uses real-time streaming for example to compute the real-time
active user counts (RTAC). For a long time they relied on Apache Storm as
their stream processing engine. Using Storm, Twitter encountered scalability,
debug-ability, and resource sharing problems.

To tackle these problems, Twitter built a new real-time stream data pro-
cessing system called Heron. Heron was developed as a direct replacement for
Storm. It tries to improve some of the shortcomings of it, while still being
backwards compatible.

In this section we will take a deep look into Heron’s internals. We will
concentrate on the parts which are relevant for the rest of this thesis. Most of
the details come directly from Heron’s source code [17], which is accessible on
Github.

3.1 Data Model and API

One of the key design goals of Heron was to maintain compatibility with Storm’s
API. That means the data model and API of Heron and Storm are identical.
This allows us to execute applications which were originally built for Storm.

The basic Heron data processing architecture consists of streams of tuples
flowing through topologies. Tuples are arbitrary data items. A tuple usually
represents something like a single sensor measurement or an application event,
like a click on a advertisement or a tweet on Twitter. A Heron topology is a
directed graph where vertices either represent sources of data or computation
of the stream, and the edges represent the data flow.

We call the vertices that produce data spouts. They typically pull data
from queues, such as for example Kafka [18], and generate a stream of tuples.
Vertices that consume this stream of tuples and perform actual computations
on the data are called bolts. The processed stream is then potentially passed on
to a set of downstream bolts. Both bolts and spout are arbitrary Java code.

Figure 1 shows an example topology that counts the number of active users
in real-time. It gets the necessary data from Kafka, distributes the data to
multiple nodes, groups the tuple by user id and timestamp, and can then counts
the active users in a distributed manner.
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Figure 2: Heron Topology Architecture

3.2 Architecture

While the data model remained identical to Apache Storm’s, the architecture
has been changed significantly.

Unlike Storm, Heron can run on different general purpose distributed sys-
tems, and does not rely on a specialized cluster scheduler like Storm’s Nimbus.
Twitter runs Heron on Aurora [19] using their homegrown scheduler.

That means each topology is run as an Aurora job consisting of multiple
containers, see Figure 2. Containers are an abstraction of a separate machine.
Multiple containers can run on a single physical node. The first container runs
the Topology Master. The other containers run a Stream Manager, a Metrics
Manager, and multiple Heron Instances.

The Topology Master manages the topology throughout its runtime and
provides information on the status of the topology. It also acts as a gateway for
metrics, but is not involved in any actual data processing.

Heron Instances does the main work for a bolt or a spout. That means it
either produces or consumes tuples. All data movement and routing complexity
was moved to the Stream Manager. Unlike a Storm worker, a Heron Instance
runs in a dedicated JVM.
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Figure 3: Overview of the communication model

The Stream Manager is responsible to efficiently route tuples. Each Heron
Instance connects to its local Stream Manager to send and receive tuples. Each
Stream Manager connects to all other Stream Manager in the Topology and
forms a O(k2) connection network, where k is the number of containers. The
number of Heron Instances n can be a lot larger than k. This allows the overlay
network to scale more efficiently.

Unlike Storm, Heron implements a backpressure mechanism. This means
the rate at which data flows through the topology is dynamically adjusted if
the downstream stages are running slow. This is done to prevent tuple loss and
unused work. When the Stream Manager realizes that one or more of his Heron
Instances is slowing down it stops reading data from its local spouts and sends
a special start backpressure message to all other Stream Managers requesting
them to do the same. Once the Heron Instance caught up it resumes reading
from its spouts and sends a stop backpressure message to all Stream Managers.
Heron calls this the Spout Backpressure approach.

As the Stream Managers performance is critical, it was written in C++.
Underlying it uses the libevent [3] eventlooper to react to incoming tuples,
enqueue them in the correct buffer and forward them in batches.

The Metrics Manager collects and exports any metrics collected on the
topology. There is one Metrics Manager for every container. The collected
metrics are then passed to a central monitoring system and to the Topology
Master.

3.3 Communication Model

In this section we will focus on the interaction between the different components
of Heron. We will take a more detailed look into these components later on.

Heron’s components use language neutral objects called protocol buffers [20]
to communicate between each other. You can think of protocol buffers to be
similar to C structs, in that they contain structured data with one or more fields.
These protocol buffers can be mapped to objects for most major programming
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languages. This allows a Heron Instance, written in Java, to easily communicate
with the Stream Manager, which is written in C++.

Figure 3 represents a spout and a bolt on two different containers that commu-
nicate with each other. We established that spouts produce data tuples. These
are represented as a protocol buffer called HeronDataTuple. However nearly im-
mediately after producing, the tuples are grouped into tuple sets. These tuple
sets are themselves also represented as a protocol buffer called HeronTupleSet.
They are then sent to its local Stream Manager via a TCP socket.

When the set arrives at the first Stream Manager, it is broken down into
its tuples. The Stream Manager then performs the necessary routing decisions
and builds a new tuple set for every destination. This time the tuple set is a
different protocol buffer called HeronTupleSet2. There are only minor differ-
ences between these two kinds tuple sets. Before being sent out the tuple set is
then wrapped into another protocol buffer called TupleStreamMessage which
is then sent to the correct next Stream Manager.

The second Stream Manager then extracts the tuple set from the received
stream massage and forwards the tuple set to the correct bolt. When the tuple
set arrives at the bolt, it will actually convert the HeronTupleSet2 into the
HeronTupleSet protocol buffer and only then it will read the tuples from the
tuple set and process them as individual tuples.

The communication between two Instances is not as straight forward as it
initially seems. The tuples are wrapped into tuple sets or other messages for
most of their journey. This makes some of the questions, like ”How long does it
take for a tuple to reach the second Stream Manager?” or ”What is the network
latency per tuple between the Stream Managers?”, either computationally too
expensive to answer or simply nonsensical.

3.4 Mertics in Heron

Heron already provides quite a few different metrics that can either be exported
to multiple monitoring systems such as Prometheus [21] or some of them can
be viewed in the Heron UI, a web interface shipped with Heron that provides a
quick overview of the topology.

As we focus on the latency characteristic of Heron, we should look what kind
of relevant metrics Heron already provides.

There is the completeLatency which is the moving average latency of a tuple,
from being produced at the spout, until it is acknowledged. This includes the
production of the tuple at the Spout, the computation at the Bolts, all the
communication latency of the tuple and the time the acknowledgement tuple
takes to return to the Spout. This can be helpful to get an impression of the
latency or to notice an error with the application, but a single moving average
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Figure 4: Overview of a Stream Manager

does not provide sufficient insight into Heron’s latency. We can neither see the
tail latency nor notice where the latency is coming from.

Heron also exposes the executeLatency, processLatency and failLatency, which
are the mean latencies to process a single tuple, acknowledgement and nack re-
spectively. These metrics give the same limited insight as it only shows a single
mean latency and does not tell us anything about the tail latency. Also these
metrics only measure the execution time of the user code and not of Heron itself
or the network latency. This again makes these latencies useful for debugging
the topology, but not for getting insight into Heron itself.

The rest of the metrics do not give us relevant latency information, but are
mostly counters of sent, processed or received tuples or information on buffer
sizes.

3.5 Stream Manager

We will take a deep look into the internals of the Stream Manager. Figure
4 shows an overview of a Stream Manager and its communication with other
Stream Managers. We will look into three main components: The Instance

Server, which communicates with the local Instances, the TupleCache, which
acts as a buffer, and the StMgrClient and StMgrServer, which handle the
connection between the Stream Managers.

The Stream Manager is built on the libevent [3] eventlooper. It executes a
callback function when a message arrives or after a timeout has been reached.
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3.5.1 InstanceServer

When either a spout or a bolt emits a tuple it put into a collection of tuples,
called tuple set, which acts as a buffer. The Heron Instance does not differentiate
between tuples with different destinations. This means in a tuple set each tuple
may have a different destination. The tuple set is then sent to the local Stream
Manager.

Whenever a message arrives at the Stream Manager the Eventlooper will
then call the correct handler. When tuple set is received the InstanceServer

will iterate over every tuple in the tuple set and make the routing decision
for each of them. It then uses this routing decision to add the tuple to the
corresponding TupleCache.

3.5.2 TupleCache

The TupleCache is basically a dictionary that maps the task id of the destina-
tion to a TupleList. That means at every Stream Manager there is a TupleList

for every Heron Instance. Each of these TupleLists consist of a queue of tuple
sets and a current tuple set. When a tuple is added to a TupleList, it is first
added to the intermediate current tuple set until it exceeds a configured size,
then the complete tuple set is added to the queue. If the total maximal size of
the cache is exceeded, we call the drain function on every tuple cache and send
out all the tuple sets.

To prevent a buildup of tuples in low load situations, the event loop is
scheduled to regularly drain the TupleCache, which means it will send out all
the tuple sets in the queue. This does not include the current tuple set. It is
only drained, if the queue is empty and it did not send out anything the last
time. So in a low load situation, the current tuple set will be drained every
other time.

If the destination instance is on the same container as the Stream Manager
it will be sent to it directly using the InstanceServer. Otherwise it will be
sent to the correct Stream Manager using the StMgrClient. This seems to be
the short-circuiting mechanism mentioned in the paper [7].

3.5.3 StMgrClient & StMgrServer

The StMgrClient and StMgrServer handle the communication between the
Stream Mangers.

On start of the Stream Manager, the Stream Manager creates an instance
of StMgrClient for all other Stream Manager and opens a TCP socket for each
of them.

This means every Stream Manager has a socket connecting it to all other
Stream Managers. Now when a Stream Manager wants to send a tuple set to
the next Stream Manager, it will call the correct client and send the message to
the corresponding Stream Manager.

The receiving Stream Manager will then forward the incoming tuple set to
the correct Heron Instance through the InstanceServer.
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3.6 Heron Instance

In this section we will take a closer look at Heron Instance. Figure 5 is an
overview of a Heron Instance running a spout task. A Heron Instance running
a bolt task would look very similar.

A Heron Instance runs in two threads, a Gateway thread and a Task Execu-
tion Thread (TET). The Gateway handles all communication with the Stream
Manager or Metrics Manager. The Task Execution Thread either runs as a
spout or bolt.

The two threads are connected by three queues, the data-in, data-out and
the metrics-out queue. Data-in and data-out queues are bound in size. If the
data-in queue exceeds this bound, the backpressure mechanism is triggered.

3.6.1 Task Execution Thread

Both the TET and the Gateway thread use an event loop implementation sim-
ilar to libevent used by the Stream Manager. Unlike libevent this event loop
implementation was specifically written for Heron. The WakeableLooper exe-
cutes in a while loop until it is explicitly stopped. The loop allows to register
timer events and tasks on wake up. Both of them are arbitrary Runnables. At
every iteration of the loop the wake up tasks and all expired timer events are
executed.

The TET uses the SlaveLooper which is an extended WakeableLooper. A
spout and a bolt only really differ in what tasks this looper is executing.

Spout For users to able to run their own spout code, they need to implement
the ISpout interface. This mainly means, it needs to provide a nextTuple()

method which produces a single tuple and calls emit() on a provided output col-
lector. With that the produced tuple is added to the OutgoingTupleCollector,
which acts as a buffer that collects the tuples and groups them to a tuple set. If
the size of the tuple set exceeds the configured tuple set size, the collector will
enqueue it into the data-out queue.

On startup the spout will register multiple tasks, which in turn will run on
every iteration of the event loop. One of the tasks is to call the user provided
nextTuple() in a loop. This will fill up the tuple collector, as long as the
configured size or timeout is not exceeded. If one of these is exceeded it will
flush the current tuple set to the data-out queue. We have seen a very similar
design in the Stream Manager, where a buffer is flushed when either a time or
size barrier is exceeded. This design decision is used throughout Heron.

The spout also handles incoming control packets, for example acknowledge-
ments for sent tuples. However this is not relevant for the thesis and will not
be covered in more detail.

Bolt Similarly to how spout code is executed, for a user to be able to run his
own bolt code, he needs to implement the IBolt interface. The most important
function of this interface is the execute() function. This function takes a single
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Figure 5: Overview of a Heron Instance

tuple and processes it. Similarly to the nextTuple() of the spout, it can then
enqueue a tuple into the OutgoingTupleCollector.

The bolt also utilizes the SlaveLooper and registers tasks to run on wake
up. It will read from the data-in queue and call execute() on every tuple until
the queue is empty or a configured time is exceeded. After that it will flush the
current tuple set.

3.6.2 Gateway Thread

The Gateway Thread builds on the NIOLooper, which is again just a slightly
modified looper. The Gateway mainly does two things: Read from the data-out
queue and send it to the Stream Manager, and read from the Stream Manager
and enqueue it into the data-in queue. It does this with two tasks which are
both scheduled to run at every iteration of the event loop, the sending task and
the receiving task.

The sending task basically moves tuple sets from the data-out queue of the
Heron instance to an outgoing packet queue, from where they are sent to the
Stream Manager. If there are no outstanding packets in this queue, it will copy
tuple sets from the data-out queue to the outgoing packet queue until the
data-out queue is empty. This basically means it copies the whole data-out

queue into the outgoing packet queue.
This will also add another task to the looper, that sends out a batch from

the outgoing packet queue. As soon as the queue is empty, the task is removed
from the looper.

The receiving task reads packets from the TCP socket and enqueues them
into the in-queue. It does this similarly to sending task in that it schedules a
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read() task, whenever the in-queue is ready to receive new tuples. This read()
task does the actual reading.

So when reading is enabled, the looper reads a batch of incoming packets,
parses them and handles each packet accordingly. That means in case of a tuple
set, it enqueues it into the in-queue.
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4 Instrumenting Heron

Our goal is to find out which parts of Heron are responsible for the observed
latency. In this section, after a detailed look into Heron’s architecture, we try
to identify possible latency sources. We look whether the metrics provided by
Heron can already give us a good idea, which components have a major impact
on latency. Finally we present our additional instrumentation and why we chose
to implement them.

In Figure 6 we can see a representation of simple tuple flow between a single
spout and bolt, located on two different containers, including every major buffer.
A tuple flow between a spout and a bolt located on the same container looks
very similar. It simply does not pass through the second Stream Manager.

As seen in Section 3.4, Heron already provides some metrics on the latency.
However neither do they provide any insight on the source of the observed
latency, nor do they show the latency distribution, which would be necessary to
properly analyze Heron’s latency characteristics.

4.1 End-to-End Latency

In order to notice any problems with Heron’s latency, we will need to collect
the end-to-end latency for each individual tuple, from spout to bolt.

To get this end-to-end latency, we do not need to alter Heron, we did this
by writing a simple custom topology consisting of a single spout and bolt. The
spout takes the current timestamp in nanoseconds and emits it. The bolt re-
ceives the timestamp, calculates the latency, and stores it. This works well as
long as the spout and bolt are on the same machine, otherwise precise time
synchronization between the hosts is needed.

To reduce the amount of data collected, we decided to use a high dynamic
range histogram [22], or HDRHistogram. It allows us to record a histogram
of the latency without any noticeable performance impact. The resulting his-
togram is written to a file as soon we processed a configurable amount of tuples

4.2 Network Latency

To notice whether latency issues originate from the network itself, we want the
latency distribution of the messages between the Stream Manager and the Heron
Instances and between the Stream Managers themselves. We need to keep in
mind that these messages contain a tuple set and not individual tuples. Doing
this will require us to extend the protocol buffers to add timestamps to the
messages.

For the instance to Stream Manager communication, we first extend the
HeronDataTupleSet protocol buffer by adding an optional timestamp field.
With this, we can change the sendMessage() function in the HeronClient

class to take a timestamp before sending the message out at the instance. This
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Figure 6: Dataflow between a spout and a bolt, located on two different con-
tainers

will add a timestamp to every tuple set added to the outgoing packets queue
from where it will be sent to the Stream Manager. This means there is still a
buffer between taking the timestamp and actually sending the message, however
this buffer is tightly integrated and works on ByteBuffer, which makes adding
the timestamp after the buffer impractical as we would have to first parse the
ByteBuffer before re-encoding it for every tuple set, which we expect to gen-
erate too much overhead. We will need to keep this in mind for the evaluation.

We then calculate the latency directly when receiving the tuple set at the
instance server of the Stream Manager. The instance server already needs to
read every tuple in the set, so we do not expect to notice any performance
impact at the Stream Manager. The latency is then stored in a HDRHistogram
and printed when the Stream Manager exits.

For the Stream Manager to Stream Manager communication another proto-
col buffer is used, the TupleStreamMessage so we again need to extend this
buffer with an optional timestamp field. Now we add a timestamp to the mes-
sage right before sending it from the StMgrClient. This is also where the
TupleStreamMessage is built, so there should not be any performance overhead
from this. At the receiving Stream Manager, we calculate the latency and build
a HDRHistogram before sending the tuple set inbound. With this setup we not
only collect latency information on data tuple sets but also on control tuple sets
as they are treated the same way in the Stream Manager to Stream Manager
communication.

The constructed HDRHistograms are written to files, as soon as the topology
is stopped. However the Stream Manager is not stopped gracefully in Heron,
which prevents us from doing that. We consider this a bug in Heron and fixed
this for this thesis, as we needed it to collect most of our metrics. We created a
patch to enable graceful shutdown of the Stream Manager and it is waiting to
be pushed upstream [23].
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We opted not to record the Stream Manager to Instance communication, as
we expect similar results as in the Instance to Stream Manager communication.

4.3 Instance to Stream Manager

We collected the end-to-end latency for every tuple. To be able to pinpoint
where each tuple spends how much time, we want to split this complete latency
into sections, from the emission of the tuple until different points in the tuple
flow. This would give us easily comparable results.

The fact that Heron batches multiple tuples in tuple sets however makes this
difficult. Right after emitting a tuple at a bolt or spout the tuple is packed into
a set. This tuple set is then sent to the Stream Manager, where the tuples are
rearranged into completely different tuple sets and sent to the next Instance.
This makes tracing a single tuple throughout the data flow nearly impossible,
without introducing large performance penalties.

There is however one point we can easily instrument on a per tuple level,
without introducing a lot of overhead. When a tuple set arrives at the first
Stream Manager, it is split into tuples, which are then routed to the correct
destination. At this point we can easily get the timestamp for each tuple.

To do that we extended the HeronDataTuple protocol buffer with an optional
timestamp field. Now right after the spout or bolt emits a tuple and before
adding it to the OutgoingTupleCollector, the actual protocol buffer for the
tuple is built. There we can easily add a timestamp without adding any overhead
At the Stream Manager, before it makes the routing decision for every tuple,
we calculate the latency and constructed a HDRHistogram, which is written to
file when stopping the topology.

Contrary to our other measurements, which are on a tuple set granularity,
this gives us results which are directly comparable to the end-to-end latency.
This way we can easily see whether the observed end-to-end latency originates
at the spout or not.

4.4 Tuple Cache

We collect metrics for the actual network communication, but what is also
interesting is how long a tuple set spends in a buffer before being sent. One of
such a buffer we expect to have an impact on latency is the tuple cache. At each
Stream Manager there is a tuple cache with queues for every Heron Instance.
When the routing decision is made, the tuple is enqueued into the correct queue.
The tuple cache builds tuple sets on the fly and buffers them until they are sent
out. There is a more detailed write up on the tuple cache in section 3.5.2

We want to measure the time from enqueueing a tuple into the tuple cache
until it is sent out. This is relatively difficult, as the tuples are added individually
and sent out as a tuple set. We can however collect two other metrics without
introducing a lot of overhead: The time it takes to build a tuple set and how
long a tuple set stays in the cache. With this data we should be able to get a
good impression on how long each tuple remains in the tuple cache.
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Figure 7: The instrumentation added to Heron

We get these metrics the following way. We add a timestamp to a tuple
set as soon as we add the first tuple to the current tuple set. We do this by
extending the HeronDataTupleSet2 protocol buffer with a timestamp field. We
then calculate the build latency as soon as the current tuple set is either added
to the queue or flushed by the drain() function. When any tuple set is flushed
we use the already added timestamp to calculate how long the tuple stayed in
the buffer. Both latencies are again added to HDRHistograms and written to a
file as soon as we terminate the topology.

This effectively measures the time the first tuple added remains in the
current tuple and how long it takes until it is flushed from the cache. We
need to keep in mind that the mean time any tuple spends in this cache will be
lower. But by subtracting half of the build time we should be able to estimate
this mean time.

4.5 Gateway Thread

Another buffer that might be responsible for an increase in latency is the queue
between the task execution thread and the gateway thread. The task execution
thread collects the produced tuples in the OutgoingTupleCollector and en-
queues them as a tuple set into the data-out queue. The gateway thread then
reads from this queue and sends out the tuple sets in batches.

This is in some way very similar to the tuple cache in the Stream Manager.
It would be interesting to see how long it takes to build a tuple set and how
long the tuple sets rest in the data-out queue. We did however not implement
this instrumentation, as we could already get an impression of this latency from
the Instance to Stream Manager latency and we soon noticed that this buffer
usually does not seem to be a major source of latency.
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5 Evaluation

To examine Heron’s latency behavior, especially in low load situations, we per-
formed multiple micro benchmarks.

All benchmarks run on a local cluster on a node with 4 AMD Opteron
Processor 6174 and 128GB of main memory.

5.1 End-to-End Latency

As we have already described in the introduction section, we observed a very
high end-to-end latency for very simple, low-load topologies. We try to repro-
duce this observation. Also, instead of relying on the moving average of the
end-to-end latency reported by Heron, we build a histogram of the end-to-end
latency.

Without prior knowledge we would actually expect a low end-to-end latency
of only a few milliseconds, as there is no computation that should slow down
the system. However in line with the previously observed latency we expect a
high latency of around 80 milliseconds.

We are using a very simple topology as described in Section 4.1. The topology
consists of a single spout and a single bolt. The spout waits for a millisecond
and emits a configurable amount of tuples containing the current timestamp.
The bolt receives the timestamp, calculates the latency and inserts it into an
HDRHistogram.

We run the topology twice. The first time, we only emit a single tuple per
millisecond. This is a very low load that should uncover any problems connected
with this type of system usage, while still being something we can reasonably
expect to see in a distributed stream processing system. As an example, Reddit,
the growing social news and media aggregation website, saw about 8.89 billion
upvotes in 2015 [24]. An upvote is an indication by a user that he liked a certain
article. This means Reddit saw a mean of nearly 300 upvotes per second which
translates to about one upvote every 3 milliseconds. This is comparable to the
load we put on our topology and it would be entirely reasonable for Reddit to
use a distributed stream processing system to analyze their data.

In the second run we emit 500 tuples every millisecond. We found that at
this load most effects connected to very low system usage disappear without
causing other problems connected to high loads.

The topology runs in two containers with 4 CPUs. The spout and bolt each
run in a separate container and get 4 GB of RAM. With this configuration the
RAM and CPU allocation should be more than enough to handle the topology
and we should not see effects caused by underprovisioning. Both containers
run on the same machine so there should not be any problems caused by clock
synchronization inaccuracies.

We use a unmodified Heron version 0.17.5 with default configuration. We
do this mainly to get a baseline of an unmodified system for reference.
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(a) 1 tuple/ms (b) 500 tuples/ms

Figure 8: CDF of the End-to-End latency of a very simple topology consisting
of a single spout and bolt with running on unchanged Heron.

Figure 8 shows the latency histogram collected by the bolt for the two runs.
For the first run with very low load, we can see the tuple latency is more or
less uniformly distributed from 10 ms to about 120 ms. Heron’s self reported
average end-to-end latency is at a little less then 80 ms. For the second run with
500 times higher load we actually see a reduced end-to-end latency of around
10ms to 20ms. The mean complete latency reported by Heron is at about 22
ms.

The second run is more or less as expected. The mean complete latency re-
ported by Heron is a bit surprising, although it does make sense when we include
the fact that the complete latency of Heron includes the time the acknowledg-
ment takes to return to the spout. So a complete latency of up to double that
of our measurements is expected.

In the first run we were able to reproduce the previously observed effect.
The latency is significantly higher then we would expect from such a simple,
low load topology. There is also a huge variance in latency. We expect this to
come from a design decision of Heron. In Heron each buffer is either flushed at
a configured capacity or after a configurable time. Keeping this in mind, we can
explain these two graphs with a misconfigured buffer. The second run with its
increased load hits the capacity threshold and flushes the buffer in a reasonable
time. The first run however does not fill the buffer and is flushed by the timeout
which seems to be set too high. This could result in such a wide distribution,
as the last tuple added to the buffer would have a low latency and the first a
very high and everything in between would be uniformly distributed.
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5.2 Added Instrumentation

To find the source of the observed latency, we are adding the instrumentation
described in Section 4. We expect more or less the same results as with the
unmodified Heron. There might be a minor increase in latency caused by the
overhead of our instrumentation. There are multiple buffers that could be re-
sponsible, in the Stream Manager as well as in the Instance.

We repeat the first measurement again using the simple topology consisting of
a single bolt and spout. The topology again runs in two containers with 4 CPUs
and 4 GB RAM for both spout and bolt and we again run it two times. Once
sending a tuple every millisecond and once sending 500 tuples every millisecond.
We use a modified Heron version 0.17.8 with added instrumentation described
in Section 4. We still keep the same default configuration.

Figure shows 9 the latency histograms collected by our instrumentation. For
the low load run we can see the tuple latency in figure 9a. The end-to-end latency
did not change significantly and ranges from 10ms to 120ms. The Instance to
Stream Manager latency is a bit lower at about 1ms to 100 ms and equally
distributed as the end-to-end latency. In Figure 9b we can see the tuple latency
for the higher load situation. The Instance to Stream Manager latency is very
low at about 3-4 ms. The end-to-end latency is at about 10ms to 20ms, so about
5ms higher than without the instrumentation

The actual network latency can bee seen in Figure 9c and 9d. The network
latency is very low. For both runs the Stream Manager to Stream Manager
latency is below 1 ms. The Instance to Stream Manager is at 1ms to 2ms.

From this we can deduce that most of the increased latency for the low load
run seems to be coming from the out-queue between the task execution thread
and the gateway thread in the spout. We loose up to 100ms or more at this step.
As we guessed this looks very much like a misconfigured buffer. After a look
into the heron internals.yaml configuration file, which configures multiple parts
of Heron including all timeouts for buffers, we can see that by default for local
clusters the timeout for the out-queue is set to 160ms. This seems to create the
latency we observe. The latency is still lower than 160ms so it looks like the
buffer actually hits the capacity threshold after about 100ms and is flushed.

For other kinds of clusters this configuration is set to 16ms, so we actually
assume this to be a bug in the default configuration. In general all other buffer
timeouts are set to 16ms, which we still find too high for low latency workloads.

As for the higher load run, not much seems to have changed. There is a
slight increase in end-to-end latency. As this increase cannot be seen in the
Instance to Stream Manager latency, we assume this is cause by some overhead
at the tuple cache instrumentation.

The network latency does not seem to cause a significant part of the observed
latency. The higher latency of the Instance to Stream Manager communication
is most likely caused by the ByteBuffer cache described in Section 4.2.
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(a) Tuple latency - 1 tuple/ms (b) Tuple latency - 500 tuples/ms

(c) Network latency - 1 tuple/ms (d) Network latency - 500 tuples/ms

Figure 9: Latencies of a very simple topology consisting of a single spout and
bolt with running on Heron with added custom instrumentation
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5.3 Updated Configuration

By updating the configuration and decreasing all timeouts we should be able
to cause a large drop in latency for the low load run. We expect a consistently
low end-to-end latency of a few milliseconds, lower then the higher load run in
the last experiment. As for the higher load run we might actually see worse
performance as we force buffers to flush early. We do however not expect to see
a large difference.

We again repeat the same measurement using the simple topology consisting
of a single bolt and spout. The topology again runs in two containers with
4 CPUs and 4 GB RAM for each spout and bolt and we again run it two
times. Once sending a tuple every millisecond and once sending 500 tuples
every millisecond. We use the same modified version of Heron. We did however
update Herons configurations. To achieve lower latency for the low load run,
we dropped all buffer timeouts to one millisecond. This especially includes the
timeout for the data-out queue, which we found to be massively misconfigured
by default.

Figure 10 shows the collected latency histograms. As expected for the low load
run the latencies reduced drastically. The end-to-end latency is now between
2ms and 10ms. The Instance to Stream Manager latency dropped to about
1ms. For the higher load run, not much seems to have changed. The end-to-end
latency actually seems to have dropped slightly to about 8ms.

For both runs the cache latency, that is the total time a tuple set remains
in the tuple cache, is equal to the build latency, the time it takes to build the
tuple set at the tuple cache. For the low load run every tuple set remains in the
cache for about 8ms to 10ms. For the higher load run this latency is lower at a
little over 3ms.

The end-to-end latency of the low load run dropped significantly by about
a factor of ten. However tuple sets seem to wait in the tuple cache for up
to 10 milliseconds, although the tuple cache is configured to be flushed every
millisecond. We need to keep in mind, that the measured time a tuple set is in
the cache is equal to the time the first tuple added to the set spends in the tuple
cache. This explains that for the most tuples the end-to-end latency is actually
lower than the mean time a tuple set is in the tuple cache, but we can clearly
see the linear distribution from about 2 millisecond up to 10 milliseconds which
we assume to be caused by this delayed flushing of the tuple cache. This would
mean that most of the observed latency is caused by this single buffer. It is
also interesting to see that for both runs the cache latency is equal to the build
latency. This means the tuple sets are never actually inserted into the queue but
are always flushed from the current tuple set, or that they are flushed nearly
immediately after being enqueued into the queue.
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(a) Tuple latency - 1 tuple/ms (b) Tuple latency - 500 tuples/ms

(c) Cache latency - 1 tuple/ms (d) Cache latency - 500 tuples/ms

Figure 10: Latencies of Heron with added instrumentation and reduced buffer
timeouts
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5.4 Libevent

We noticed that the tuple cache is only flushed every 10 milliseconds instead of
the configured one millisecond. As we covered in Section 3.5.2 the tuple cache
is flushed by a libevent timer that is now configured to run every millisecond.
However the currently building tuple set is only flushed if we did not flush
anything last time. So in case of very low load, we only flush the cache every
second iteration. This means the cache would flush every 2 milliseconds, which
still does not explain the observed 10 milliseconds.

It would be quite surprising, if libevents timer were the source of the observed
latency, especially since libevent configures its timer in microsecond granularity.
It would however explain our observation well.

To test whether the underlying libevent library is the root of this inaccuracy,
we wrote a standalone piece of C++ code, that registers a libevent timer to run
periodically. It then measures the actual period and constructs an HDRHis-
togram. We run it for timer periods between 1 microsecond up to 50 millisec-
onds. We run each measurement for 30 seconds.

Figure 11 shows the measured period with the actual configured period as as
vertical line. For periods below 2 milliseconds, the actual measured latency lays
much above (close to 5ms) the configured flush interval, indicating inconsistency
in behaviour. For 2 ms up to 10 ms, the distribution is more or less correct,
however there is still quite a high variance. For periods of 10 ms and above, the
accuracy is starting to improve and is reliably close to the configured period.

Libevent does seem to be the source of the observed latency. Libevent timers
are not suitable for periods below 5 milliseconds and always seem to run every
5 millisecond if configured for lower periods. This explains the 10 millisecond
delay in Heron, as the current tuple set is only flushed every second time and
the configured 1 millisecond timer only runs every 5 millisecond.

In conclusion we can see, that most of the observed latency was caused by
an error in the standard configuration of Herons local cluster. This prevented
a buffer to be flushed in time. Further tuples are stuck in the tuple cache for
up to 10ms because of inaccuracies in the underlying libevent library. We were
however not able to pinpoint the cause of this inaccuracy.
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Figure 11: CDF of the Latency of libevent timers. The vertical line represent
the actual configuration.
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6 Conclusion and Future Work

Our goal was to explain the unexpectedly high observed latency. We added more
detailed latency instrumentation and we found that as expected most latency
is added by the various buffers inside Heron and not by the network. Heron’s
buffer architecture results in hard to predict latency characteristics and makes
it difficult to configure.

One example of this complex and hard to predict system is that with Heron’s
default configuration we can actually sometimes observe that latency increases
when we decrease load, caused by the misconfiguration of a buffer. And even
after tuning Heron’s configuration for low latency workloads we can see a similar
effect caused by inaccuracy in the timing of the underlying libevent library.

We believe some design decisions, especially the liberal usage of buffers and
the design of these buffers, made Heron hard to reason about and had a negative
impact on latency. Nearly every stream processing system uses batching to
increase network throughput, but Heron batches tuples into tuple sets, places
these sets into buffers which are then sent in batches. It is not clear whether
this double batching actually improves or hinders performance.

Reworking some parts of Heron could improve its latency characteristics.
Multi-threading the Stream Manager could improve latency and performance.
Similarly to the instance we could split it into two threads with a routing thread
that makes the routing decisions and a gateway thread that sends out the mes-
sages. This would solve the libevent issue we discovered.

Further, reworking Heron to either not rely on tuple sets or to not rely
on batching these sets but to directly send it out as soon as ready could be
interesting. By addressing the double batching described earlier this might
result in a more predictable and possibly more performant system.

For future work, additional benchmarks with higher loads and more complex
topologies could lead to other interesting findings. Especially for high through-
put workloads, we expect the single threaded Stream Manager to become the
bottleneck. A detailed look into the Stream Manager and its buffers could lead
to better insight into this problem. Also in our benchmarks we noticed tail
latencies which were up to 10 times higher than the median, a closer look into
what causes these tail latencies would definitely be interesting.

The instrumentation developed for this thesis gave valuable insight into
the inner workings of Heron, but the way these metrics are collected makes
it cumbersome to use it for tuning Heron for a specific workflow. A next step
would be to integrate these metrics into an existing monitoring system, such as
Prometheus [21], or analysis systems, such as Snailtrail [25].
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