
Master’s Thesis Nr. 149

Systems Group, Department of Computer Science, ETH Zurich

Expressing the Routing Logic of a SDN Controller as a Differential Dataflow

by

Christian Stuecklberger

Supervised by

Dr. Desislava Dimitrova
Dr. Ioannis Liagouris
Prof. Timothy Roscoe

Jan 2016–July 2016





Abstract

Programmable networks are quickly gaining popularity in both academic research and in-
dustry, as they provide a new way to deal with network management. Several deployments
by industry including Microsoft and Google already demonstrate the advantages of such
paradigm shifts. Despite the initial momentum in the development of logically centralized
control logic, i.e. the network controller, a shift towards proprietary industry-driven solu-
tions is observed. Part of the problem is that open source academic-backed controllers have
difficulties to scale at the level required by industry operation, particularly when it comes
to the speed of operation. This thesis investigates a new approach towards the controller
platform by adopting a dataflow processing framework as the computational foundation.
At the same time it introduces the base of a more formal way to reason about network
management. Specifically, the thesis builds around a representation of the network as a
graph which allows us to specify high-level configuration policies as constraints on top of
this graph and use well-understood graph computations in a data-parallel and incremen-
tal fashion to calculate the network routing. Our results demonstrate a very competitive
performance of the routing module even before potential optimizations are conducted.
Furthermore, interaction with the system is intuitive and human-friendly thanks to the
higher-level policies we introduce.

i





Acknowledgments

First I would like to thank my two supervisors, Desislava Dimitrova and Ioannis Liagouris.
They were both essential during the process of writing the code and text in the scope of
this thesis and were always there to help me when I ran into problems. Desi explained
all the parts of network technology I needed for my work and was of immense help with
finding errors of grammar or content in this thesis. She also never failed to motivate me
when I had the feeling my progress was too slow by providing nice words and assuring
me everything is fine. John introduced me to the framework that is fundamental to this
thesis, explaining the parts I found hard to understand. He was a huge help in finding
bugs and crafting solutions to problems that seemed unsolvable to me at times.
Then I want to thank Zaheer Chothia who was always willing to help with debugging the
code and various other things. I also want to thank all friends that took part in discussions
about the topic and helped me with the many smaller issues that came up.
Finally I would like to thank Prof. Timothy Roscoe for making this thesis possible.
Especially the weekly meetings he organized were helpful to get new input and resolve
issues in the scope of this work.

iii





Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Preliminaries 5

2.1 The Rust Programming Language . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Dataflow Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Timely Dataflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 Differential Dataflow . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Software-Defined Networking (SDN) . . . . . . . . . . . . . . . . . . . . . 9

3 Related Work 11

3.1 SDN Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Network Programming Languages . . . . . . . . . . . . . . . . . . . . . . . 14

4 Model 17

4.1 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

v



Contents

5 Implementation 23

5.1 System-Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2.1 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2.2 Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.3 Parsers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3.1 Lexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3.2 Topology Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3.3 Policy Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.4 Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.4.1 Run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.4.2 Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.4.3 Dataflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.4.4 Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4.5 Utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.5 Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.5.1 Main . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.5.2 Command-Line Interface . . . . . . . . . . . . . . . . . . . . . . . . 54

5.6 Generate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.6.1 Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.6.2 Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.6.3 Update Batches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.7 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.7.1 Run with Command Line Arguments . . . . . . . . . . . . . . . . . 59

5.7.2 Run with File Arguments . . . . . . . . . . . . . . . . . . . . . . . 59

5.7.3 Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

vi



Contents

6 Evaluation 65

6.1 Experimental Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.1.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.1.2 Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.1.3 Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.1.3.1 Fat-Tree Topology . . . . . . . . . . . . . . . . . . . . . . 67

6.1.3.2 Jellyfish Topology . . . . . . . . . . . . . . . . . . . . . . 68

6.2 Network Size Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.3 Scaling with Number of Workers . . . . . . . . . . . . . . . . . . . . . . . . 71

6.4 Influence of Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.4.1 Number of Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.4.2 Policy Length Comparison . . . . . . . . . . . . . . . . . . . . . . . 77

6.5 Topology Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.5.1 Connection Failures . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.5.2 Connection Weight Updates . . . . . . . . . . . . . . . . . . . . . . 85

6.5.3 Switch Failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7 Conclusions 91

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.2 Directions for Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A Detailed Measurements 95

vii





1
Introduction

In this chapter we provide a high-level overview of the technical challenges in managing
today’s networks. We then describe recent advances in real-time data processing that
motivated our work, allowing us to effectively tackle several open problems in the field of
programmable networking. The contributions of our work is summarized at the end of
this chapter where we also outline the structure of this thesis.

1.1 Motivation

Computer networks are steadily getting bigger and also the traffic within those networks
keeps increasing. This is especially the case in data centers which may include hundreds
or even thousands of physical machines. Traditional networking approaches build upon
technology that was introduced several decades ago and has already become obsolete.
Switches are an example for this, they often rely on incremental network discovery to try
to locally determine the best routing within the network. Generally conventional networks
tend to be inflexible and slow to respond to changes of e.g. traffic patterns or network
topology. The rise of Software Defined Networking (SDN) offers potential to improve
on this. SDN tries to solve many problems of traditional networking by giving explicit
control over the routing in the network. Although the principles of SDN are promising the
solutions currently available face several problems. First they do not offer the performance

1



Chapter 1. Introduction

and scalability that is needed to handle the fast-pace increase of internal traffic in large-
scale data centers. Second they tend to be hard to set up and lack possibilities to easily
constrain the flow of packets in the network. Third they are all build upon traditional
programming languages and paradigms. In our work we want to improve on all of the
above points by applying recent advances in the fields of programming languages, graph
databases and real-time data processing. This includes the new programming language
Rust and two novel frameworks, Timely Dataflow and Differential Dataflow. They enable
real-time data processing with low latency and high throughput, and also support efficient
graph computations. Their biggest advantages are the fast processing of incremental
updates to the input data and the completely transparent parallelizability of the dataflow
program. Both of these features are highly useful when creating a network controller and
enable new levels of performance. Additionally the Rust language helps to implement the
controller with safe and easy to read code.

1.2 Problem Statement

In the scope of this thesis we want to define a powerful model for various network man-
agement tasks. It should allow to capture all important aspects of a big computer network
in a principled manner. Next we want to express complex routing tasks as a combina-
tion of well-understood dataflow computations. They should be efficiently executable in
a scalable fashion and allow incremental updates of the input data. Finally we target a
human-friendly configuration of the system through the definition of a policy language.
This language should allow both intuitive and formal-based policies which can be trans-
lated into restrictions on the dataflow. To summarize, the goals are to provide manage-
ability through the model, simplicity through the policy definitions and efficiency through
the dataflow implementation.

1.3 Contributions

Within the scope of this thesis we make the following contributions:

Model We define a model for topologies and policies. A topology consists of hosts,
switches and weighted connections. A policy is composed of a source host, a desti-
nation host and a constraint defining switches that need to be on the routing path.

2



1.4. Structure of the Thesis

We also introduce a concise and simple syntax that allows to describe topologies
and policies. The model is extensible and allows to extract different views of the
network, depending on the particular management tasks.

System We create the prototype of an SDN Controller implemented as dataflow com-
putation. It is built on top of the differential-dataflow library and written in the
Rust programming language. To allow adding constraints to the routing it supports
a policy language that corresponds to an expressive subset of widely-used policy
languages. It performs the routing tasks in a data-parallel fashion and thus scales
well when increasing the number of workers. Furthermore it is able to update routes
incrementally with extremely low latency and high throughput. To allow simple
instantiation it offers a command-line interface. We provide a thorough evaluation
of the controller based on extensive measurements we conducted with Fat-Tree and
Jellyfish network topologies to show the strengths of our approach.

Utilities We build a test bench measuring the performance of our SDN controller in detail.
With it we show the effectiveness of our approach and how it scales when adding
more computing resources or increasing the input sizes. We also create generators
for Fat-Tree and Jellyfish topologies and also for policies of arbitrary size. They are
used by the test bench to show how our SDN controller, i. e. its underlying dataflow
computation, scales when increasing the input size.

1.4 Structure of the Thesis

In the following we explain how this thesis is structured. Chapter 2 gives details on the
foundations of our project. It introduces the Rust programming language, the dataflow
programming paradigm together with the two libraries implementing it and the concept
of Software Defined Networking. In Chapter 3 we present the most well-known network
programming languages and other implementations of SDN-controllers. Moreover we show
what else has been done with the dataflow framework we use. Chapter 4 describes the
model of the data types we used. This encompasses the topology, policy and the syntax
we created to allow the creation of input files for both. Next follows Chapter 5 which
shows our implementation. It gives an overview of the project structure and then reveals
in detail what we implemented. There we also show the interface of our controller and
its test bench. Furthermore we justify our choices for data types and algorithms. In

3



Chapter 1. Introduction

Chapter 6 we provide an evaluation of our work. We define exactly how we conducted
our benchmarks and then present the results. This is done with the help of many plots
and tables. Additional tables providing all measurements we conducted are shown in the
appendix’ Chapter A. Finally we provide conclusions of our findings and give directions
for future work in Chapter 7.

4



2
Preliminaries

In this chapter we explain technical details one needs to understand before reading the rest
of the thesis. This especially includes the dataflow programming model which is the basis
for the two frameworks our work builds upon, timely-dataflow [McSb] and differential-
dataflow [McSa]. We introduce Rust, the programming language we used and in which
timely and differential are written. Also we give an overview of Software-Defined Net-
working (SDN).

2.1 The Rust Programming Language

Rust is a new systems programming language designed with the goal to be ”a safe, con-
current, practical systems language”1. The project was started by Graydon Hoare in 2006
and the first stable version of the compiler – Rust 1.0 – was released 2015 on May 15th2.
Although sponsored by Mozilla, the development is done by a big community not only
consisting of Mozilla employees. The project is released as open source under the MIT
[MIT] or the Apache license version 2.0 [Apa].

The language works without the use of a garbage collector and guarantees memory safety
and data-race-free concurrency. Memory safety means that it is technically impossible to

1https://www.rust-lang.org/faq.html#what-is-this-projects-goal
2http://blog.rust-lang.org/2015/05/15/Rust-1.0.html

5

https://www.rust-lang.org/faq.html#what-is-this-projects-goal
http://blog.rust-lang.org/2015/05/15/Rust-1.0.html


Chapter 2. Preliminaries

dereference a null pointer, to have a dangling pointer to an already deallocated object or
to do an out-of-bounds array access. This prevents bad things from happening because
all three events listed above can lead to either an abort of the execution or an invalid
program state. The second warranty, data-race-free concurrency, guarantees that only one
thread can have write access to a variable at any time. This saves the programmer from
having to deal with locks in normal circumstances and avoids many common mistakes.
In conventional programming languages two threads can potentially write to the same
variable simultaneously, which leads to indeterministic program behavior or even invalid
program states in the worst case. Rust enables the above properties by introducing the
concepts of scoping, non-null types, ownership, borrow checking and lifetimes among oth-
ers. Please consult our references for more details on those concepts. Apart from array
bounds checking which must be done at runtime, most of the other checks enabling the
properties mentioned above occur statically at compile time so they do not induce runtime
overhead. As a side effect this also allows the compiler to give very detailed error messages
in case the programmer does not comply with the language’s concepts.

Rust allows memory allocation on the stack and on the heap. All local variables are stored
on the stack by default. When something needs to be allocated on the heap, it can be
done by using the type Box. For example when a primitive type like a number should be
stored on the heap, it is wrapped in an object of type Box. This object stores the address
of the memory location and automatically deallocates its memory on the heap once it goes
out of scope.

[RTa, RTb, Bla15]

2.2 Dataflow Programming

The dataflow programming model defines a computation as a directed graph, where the
data flows from one processing node to another. Each node can have incoming and outgo-
ing edges where data tuples go in and out respectively. To define a dataflow program, the
programmer has to specify the graph’s nodes and edges and also how each node modifies
and forwards data. In contrast to conventional computer programs the execution order is
not explicitly defined. Instead, it is determined by the data present in each nodes’ buffer.
No data means there is nothing to process and the node is not scheduled for computation.
A non-empty buffer on the contrary means the node has work to do.

6



2.2. Dataflow Programming

2.2.1 Timely Dataflow

Timely dataflow is a computational model first introduced in 2013 by Murray et al.
[MMI+13]. It was developed to combine high throughput with low latency and allow for
incremental, iterative computations with consistency guarantees. Specifically, this model
provides the following features (from [MMI+13, p. 1]):

1. loops allowing feedback in the dataflow;

2. stateful dataflow vertices capable of consuming and producing records without global
coordination;

3. notifications for vertices once they have received all records for a given round of
input or loop iteration.

In Figure 2.1 we show an example graph visualizing a timely computation. It has got an
input and output node designating the interface to code outside of the dataflow compu-
tation. There also is an embedded loop with a designated ingress (entry), egress (exit)
and feedback node (I, E and F respectively). The computation within the loop happens
in a separate scope that has its own timestamps. The ingress, egress and feedback nodes
handle the conversion from the outer scope’s timestamps to the ones used inside. This is
necessary to keep track of iterations and allows the loop to iterate until reaching a fixed
point. The nodes performing computations are A, B, C and D. They can represent any
operators, which are either predefined by the library or are custom-made ones.

The creators of timely dataflow built the prototype implementation Naiad. They wrote
it in C# and support LINQ-Queries3 for the differential-dataflow part. Its potential was
shown by evaluating it with three different large-scale graph problems and outperforming
other systems by orders of magnitude. [MMI+13]
In our work we do not use the Naiad System introduced in the paper cited above. Unfor-
tunately the project was terminated when the Microsoft Research Lab developing it was
shut down. Luckily, a modified version was written in Rust by Frank McSherry, a former
contributor of the Naiad system. It consists of the library timely-dataflow [McSb] released
under the MIT License [MIT]. The code is extensively documented and there also exist
several tutorials and blog posts on how to use the libraries. Also, Rust is a good choice
for a framework like this, for the reasons outlined in Section 2.1.

3https://msdn.microsoft.com/en-us/library/bb397926.aspx

7

https://msdn.microsoft.com/en-us/library/bb397926.aspx


Chapter 2. Preliminaries

[MMI+13]

B C

F

A D

Loop context

Streaming context

In OutEI

Figure 2.1: Timely dataflow graph example. Contains an input and an output node and
a loop with a feedback edge. Source: [MMI+13, Figure 3]

2.2.2 Differential Dataflow

Differential dataflow is an enhancement of timely, extending it with a new data type and
additional operators. It introduces the notion of operators that are applied to collections,
which are sets of data tuples. Some of the available operators are map, join, group, con-
catenate or iterate. Another one is iterate, which contains an inner dataflow computation
it repeatedly executes until reaching a fixed point. Many different problems can be ex-
pressed with those operators but they are particularly suitable for graph algorithms such
as the evaluation of connected components or a breadth-first search.
The defining characteristic of the differential dataflow framework is the fact that it pro-
cesses its input incrementally. Each time new input arrives only the deltas are trickled
through the computation, leading to a low latency response. Another feature of differen-
tial dataflow is the fact that computations can be transparently parallelized. This allows
to decrease the runtime by just instructing the system to use more threads when running
the program on a multi-core machine.
Both properties make the framework perfectly suitable for networking tasks such as routing
in a computer network. The low-latency responses to incremental changes allow adapting
the forward rules so they fit the current network load very fast. It is also able to support
huge network sizes by utilizing all available cores on a powerful multi-core computer. A
possibility to implement the routing algorithm is modeling the network as a graph with
weighted edges and then calculating the shortest paths with Dijkstra’s algorithm which is
based on a breadth-first-search. After initially computing those paths between all network
nodes the dataflow computation can react very fast to updates of the network. Those

8



2.3. Software-Defined Networking (SDN)

updates could be changes of the network load or connection failures. The former can be
modeled as a weight increase of an edge in the graph. The latter manifests in the removal
of the respective edge from the input graph.

[MMII13, CLMR16]

2.3 Software-Defined Networking (SDN)

Since the first computer networks were built, network sizes and utilized bandwidth are
steadily increasing. Despite this, the technology used to build those networks did not
change with the same pace. Most of the hardware utilized today builds upon technology
already around for years or even decades. We are now at a point where increasing the
hardware specification alone is not enough anymore. New technology like Software-Defined
Networking (SDN) can lead to significant performance and cost improvements. In this
section we explain how this could be done and also what the problems with traditional
network hardware are.

Conventional Networks In conventional networks the routing is generally determined
by the switches. None of them has a global picture of the network, they iteratively de-
termine their own approximation of the optimal routing. This procedure is robust but
takes time and is especially slow when changes or failures occur in the network, which
is its biggest disadvantage. Forwarding rules are also not guaranteed to be consistent or
optimal through all switches. Another drawback is the fact that it is very complicated to
enforce global policies. Also the high-end switches needed for big networks tend to be very
costly and proprietary hardware generally made innovation in the sector slow and expen-
sive. Specifications of the hardware were evolving slower than the increase in data volume.
Especially data centers needed alternatives to deliver on their customer’s contracts and to
cope with the ever-increasing traffic demands.

Switches and Routing in SDN Software-Defined Networking is a new approach in
which a central entity – the controller – determines the routing tables. It allows to operate
from a global view and respond to changes and failures in the network much faster and
more efficiently. Also the traffic management by a central controller entity has potential
to be near-optimal in regards of network utilization and path lengths and to simplify the

9



Chapter 2. Preliminaries

management of network policies.
In SDN the control plane is separated from the data plane. The former consists of the
central controller and all the information it possesses. The latter encompasses the switches
and the actual process of forwarding the packets to the correct next network node. Nowa-
days the data plane is very mature and advanced. The introduction of OpenFlow allowed
the standardization of the interface across different vendors. The control plane on the
other hand is hard configuration work with many different used protocols. There exists
no single tool allowing to set up a network easily.
In SDN switches announce their presence by sending keep-alive messages. That way the
controller discovers the topology and creates the topology graph. With this information
it then runs the routing algorithm and generates flow-rules it deploys on the switches.

10



3
Related Work

In this chapter we give an overview of efforts in the area of controller logic development
for programmable networks. Section 3.1 introduces other SDN controller platforms that
are available today. They are all written in conventional programming languages like
Python or Java, as we know of no SDN controller that is implemented as a dataflow
computation. In Section 3.2 we show network programming languages. Their purpose is
to define constraints on the flow of packets in a network.

3.1 SDN Controllers

This section describes and compares five open-source controllers. The paper we cite from
written by Khondoker et. al. [KZMB14] suggests those as the most important. They
argue that these are the most used controllers that are properly documented, provide a
well-engineered implementation and are neither deprecated nor are constructed for special
tasks. The following list contains their names, an URL to the project’s main website and
the language they are written in:

Ryu https://osrg.github.io/ryu/ (Python)

POX http://www.noxrepo.org/pox/about-pox/ (Python)

OpenDaylight https://www.opendaylight.org/ (Java)

11

https://osrg.github.io/ryu/
http://www.noxrepo.org/pox/about-pox/
https://www.opendaylight.org/


Chapter 3. Related Work

Floodlight http://www.projectfloodlight.org/floodlight/ (Java)

Trema https://trema.github.io/trema/ (Ruby and C)

All five controller platforms are under active development and two of them are supported
by big companies. Ryu is backed by NTT, the biggest Japanese telecommunications
provider and Trema by NEC, which is a big network hardware manufacturer. They all
support Linux as a platform to run on, POX and FloodLight additionally list Windows
and Mac OS as supported systems.

Implementation Language The mentioned platforms outside of Trema are built in
Java or Python, Trema is built with C and Ruby. All of those are conventional program-
ming languages that were not specifically created for networking applications. This makes
it difficult to reflect the iterative computations in network management. The C language
may be the most suited for those applications, as it is very low-level. We think dataflow
programming is much better suited for problems found in network management. It is fast,
highly parallelizable and based on the same concept as computer networks themselves.

Southbound Interfaces Communication between the controller and the forwarding
layers of the network happens through the controller’s so called southbound interfaces.
They are represented by APIs following certain standards, e. g. OpenFlow1, which is the
one most commonly used. Of our controller selection all support OpenFlow version 1.0
and Ryu additionally supports versions 2.0 and 3.0. Through this standard the controller
can instruct the switching devices (both in hardware and software) which paths packets
in the network should take.

Northbound Interfaces Counterpart to the southbound interface are the northbound
interfaces. Through it the controller can receive instructions on how the traffic in the
network should be routed. It can also allow to set constraints and define restrictions on
the routing of some packets. Ryu, POX and Trema provide an ad-hoc API, which means
that the controller can be configured by using the implementation language. OpenDaylight
and Floodlight on the other hand offer a RESTful API, which means the controller can
be programmed through a resource identifier (e.g. for a switch) in combination with an

1OpenFlow https://www.opennetworking.org/sdn-resources/openflow/

12

http://www.projectfloodlight.org/floodlight/
https://trema.github.io/trema/
https://www.opennetworking.org/sdn-resources/openflow/


3.1. SDN Controllers

action (e.g. add rule to drop all packets coming from switch X). POX and OpenDaylight
additionally provide a graphical user interface. Ryu offers one for the initial phase of the
setup and configuration. Floodlight has a web-interface accessible through the browser
to execute the RESTful queries. Our work in policies focuses on providing more human-
friendly interaction on the northbound interface.

Scaling Another important factor for network controllers is their ability to process big
network topologies. When the number of nodes in the network gets higher it is required
that the controller platform scales. For this reason Ryu, Floodlight and Trema support
multi-threaded execution. OpenDaylight is built with a distributed design concept. This
means that several instances of the controller run in parallel and communicate with each
other, leading not only to arbitrary scaling but also allows redundancy to provide fail-
safeness. Our choice of framework, Timely and Differential Dataflow, was also driven by
scalability requirements. Differential Dataflow offers transparent parallelizability and its
incremental input processing makes it an excellent candidate for a controller platform.

Virtualization Since the advent of virtual servers residing on physical ones, the capa-
bility to handle traffic of virtual networks is a necessity for controller platforms. This is
closely related to simulation and emulation of networks, which is used to test network
controllers. All controllers except Trema support network emulation with Mininet and
virtual networks that use Open vSwitch2. Open vSwitch is a virtual switch that acts the
same as a physical switch in the hardware network, but exists only in software. It connects
several virtual machines as if they were connected through a real switch, also embedding
them in the physical network the host machine is part of. Trema has its own built-in tools
for emulation and virtual switches which we do not describe in more detail. Our prototype
has the potential to not only align with software switches but to also integrate with their
hardware counterparts.

Modularity The last criterion by which we compare the different controller platforms
is modularity. This trait is important because it enables separation of concern and the
easy replacement of implementation parts. It leads to a higher reusability of not only
the controller’s code, but also configurations of the system which can be extensive for
big networks. Generally all the controller we present here are more or less modularly

2Open vSwitch http://openvswitch.org/

13

http://openvswitch.org/


Chapter 3. Related Work

built. OpenDaylight and Floodlight are built as a modular system completely where the
individual submodules interact through services to form the whole controller platform.

[KZMB14, KREV+15]

Table 3.1: Overview of five different SDN-Controller platforms.

Controller Platform

Ryu POX OpenDaylight Floodlight Trema

Impl. Language Python Python Java Java Ruby / C
Supported OS mostly Linux, Linux Linux, Linux

Linux Mac, Mac,
Windows Windows

Open Source yes yes yes yes yes
Commerc. backed by NTT no no no by NEC

GUI partial yes yes web no
Multi-Threaded yes no yes (distr.) yes yes

OpenFlow v3.0 v1.0 v1.0 v1.0 v1.0
Northbound API ad-hoc ad-hoc RESTful RESTful ad-hoc

Modularity medium medium high high medium
Virtualization Mininet, Mininet, Mininet, Mininet, Built-in

Open Open Open Open
vSwitch vSwitch vSwitch vSwitch

3.2 Network Programming Languages

In this section we give an overview over the most well-known network programming lan-
guages. The purpose of network programming languages is to configure the packet for-
warding hardware within a network. One simple approach to this is a low-level machine
language like OpenFlow that resembles the hardware and provides a unified interface to
it. Apart from the complexity the high number of policies that have to be managed an
array of other issues for the programmer arise. For example we need additional support
to detect overlapping rules or different priority ordering. Also the installation of new rules
affecting packets that are still traversing through the network can cause problems. High-

14



3.2. Network Programming Languages

level languages can spare the user of those troubles and also provide abstractions that
help becoming more productive to solve complex tasks faster and easier. In the following
we present four high-level network programming languages. We took them as inspiration
for our system’s syntax in regards of what can or should be done. Although we do not
want to compare ourselves with them, as we try to offer a base for possible future efforts.
It is not directly shown in this thesis but in additional research efforts application-level
load balancing was implemented, which introduces higher-level policies hiding the network
composition through the ability to automate it.

Frenetic Frenetic was the first attempt to create a high-level language on top of Open-
Flow. It is implemented in the C programming language and built on top of the
NOX controller platform, a predecessor of POX. The language introduces queries
and operators to allow for code with modular design of policies It also aims to have
the programmer think only about what he want and not how the network hard-
ware implements it or what problems could arise from his or her chosen constructs.
[FHF+11]

Pyretic Pyretic is the successor of Frenetic and written in Python. It also builds upon
OpenFlow and its implementation is integrated with POX, which is the Python
based version of the NOX platform. In contrast to Frenetic and most other network
programming languages it is an imperative language. [RMF+13]

Merlin The Merlin framework is implemented in the OCaml and C programming lan-
guages and builds atop the Frenetic controller. It extends its language with band-
width constraints that it resolves with an optimizer during compilation to generate
OpenFlow compatible constraints. [SBM+14]

Fibbing Fibbing is a network architecture that combines the advantages of SDN with
the robustness of distributed network routing in conventional networks. Its biggest
advantage is the fact that it uses traditional switches rather than OpenFlow com-
patible network hardware and manipulates the routing by inserting fake nodes in the
network. Policies can be defined with help of a high-level language that is part of
Fibbing. It allows to set path requirements in the form of network nodes that must
or must not be passed on a certain packet stream through the network. [VTVR15]

[KREV+15]

15





4
Model

In this chapter we describe our model for the necessary data types we use. This encom-
passes the topology and policy, either of which can be generated in arbitrary sizes directly
in the program or parsed from text files. We explain the implementation for both detailed
in Section 5.2.

4.1 Topology

A network topology as we understand it is a graph consisting of nodes and links. In our case
nodes can be either hosts or switches in the network but not both. Links are connections
among exactly two switches and represent a network cable. Also part of our topology
model are update batches that depict the removal or update of network connections. In
the subsections below we present all of those individual parts in detail and also describe
the input file format we accept for topologies.

Host Hosts are the network endpoints, the producers and consumers of information
which can be servers, clients or terminals. Source and destination of a packet flow within
the network can only be hosts. For routing purposes without bandwidth constraints we
deemed this as acceptable. We assume an admission control takes care of capacity checks.
Hosts are connected to exactly one switch and no other nodes. We do not consider this

17



Chapter 4. Model

link to its parent as a connection, it is not contained in a topology’s list of connections.
Each host in our model has a unique name, its own node id and also knows to which
parent switch it is connected.

Switch Switches are network intermediates and route the traffic from source to desti-
nation host. This route can take several hops over different intermediate switches before
reaching the parent switch of the destination host. They can use their available ports for
connecting either to other switches or hosts where they cannot connect to the same node
twice. Each switch has a unique name, its own node id and knows about all nodes it is
connected to.

Connection A connection in our model represents a link between two switches with a
certain integer weight. The weight could also be considered a cost where higher numbers
are worse than lower numbers. In our model connections are bidirectional so they do not
have a designated source and destination. They also do not have an explicit id or name
because a link is uniquely identified by the pair of nodes they connect. Each connection
knows the ids for two switches and has a weight.

Update Batch We model updates of the topology connections by introducing the update
batch. Each update batch consists of one list with removals and another list with additions
of connections. This also covers weight update, which can be modeled by first removing
the connection to be updated and then adding it again with the new weight.

Input Format For the definition of a topology by an external file we also created a
simple syntax. We give an example input file in Listing 4.1 and will refer to it throughout
this paragraph. The topology it describes is shown in Figure 4.1. In the syntax a switch
is defined by the symbol star “*” followed by the switch’s unique name. An example is
given on lines 4, 7 and 10 of Listing 4.1. A host is defined by a dot “.” followed by the
name of its parent switch and the new host’s unique name preceded by a star “*” as can
be seen in lines 5 and 6 among others. Connections are defined by providing both switch’s
node-ids and the weight of the connection enclosed in colons as on lines 17-19. Comments
are supported as single line comments indicated by a double slash “//” and multi-line
comments enclosed within “/*” and “*/” as in C-like languages.

18



4.2. Policy

Figure 4.1: Example topology created from input file in Listing 4.1

Switch A

Switch B

Switch C
Host A1

Host A2

Host B1

Host B2

Host C1

Host C2
3

1

2

Listing 4.1: Example topology input file

1 /* Example Topology File

2 ========================= */

3 // Switches and Hosts

4 *Switch_A

5 .Switch_A*Host_A1

6 .Switch_A*Host_A2

7

8 *Switch_B

9 .Switch_B*Host_B1

10 .Switch_B*Host_B2

11

12 *Switch_C

13 .Switch_C*Host_C1

14 .Switch_C*Host_C2

15

16 // Connections

17 Switch_A :3: Switch_B

18 Switch_A :1: Switch_C

19 Switch_B :2: Switch_C

4.2 Policy

In our model network policies are rules determining constraints on the paths packets in
the network take. Packets are identified by the flow id attribute described in Section 4.2.
In a real network flow ids can be constructed by packet headers, which requires only minor

19



Chapter 4. Model

additions to our code. Each policy consists of a flow id and a constraint. Policies can be
read from a file or created in arbitrary size as we describe in Subsection 5.6.1. The former
has to contain the policy definition string in the syntax defined in the Paragraph Language
Syntax below.

Flow Id As mentioned before, flow ids are classifiers for packets. They depict a certain
type of packets being transmitted from one host to another. Each flow id contains packet
type, source host and destination host. A flow id going from host a to b is distinct from a
flow id going from host b to a. Every transmitted network packet always has exactly one
flow id where all fields are properly defined. The packet type or destination field can also
be a wildcard, such that a set of flow ids is represented.

Constraint The constraint in a policy constrains the path a packet is allowed to take
through the network. It can define arbitrary many switches the packet must pass before
reaching its destination host. A constraint has logical operations and also nodes on which
those operations are executed on. The available operators are OR and AND. As an example
they could be used to load balance certain paths in the network. So one packet stream
could be instructed to pass through switches A and B, while another stream could be
constrained to always go through switch C and D, which can help to distribute the load
over several switches. If the network load is not know a priori, two different paths can
be given and concatenated by the OR constraint, so the algorithm picks the one with the
lower edge weight. Both operators have exactly two children which can be either a switch
or recursively another operator. In Figure 4.2 we show the abstract syntax tree for the
first policy from Listing 4.2. In this policy all packets Host_A1 sends Host_C1 first have
to go through Switch_A1 and then pass either Switch_B or Switch_C before reaching their
destination Host_C1.

Language Syntax Same as with the topology we defined a policy syntax, which allows
to import policies from an external file. The content of an example policy file is given in
Listing 4.2. Each policy starts with the name of a source host, followed by a colon “:”.
Then the constraint follows, consisting of arbitrary many switch names concatenated with
either dots “.” or pipes “|” representing AND and OR concatenation. Operator precedence
is higher for the AND than for the OR. This means that a | b . c is translated into a
constraint equivalent to a | (b . c). Using parentheses to change the precedence is also

20



4.2. Policy

Figure 4.2: Abstract Syntax Tree for Policy 1 from Listing 4.2

AND

ORSwitch A

Switch B Switch C

Host A1 Host C1

possible. Another colon “:” follows when the constraint ends. Last part of a policy must
be a host name depicting the flow destination. Comments are again possible, where multi-
line ones are enclosed by “/*” and “*/”, single-line comments start with “//” and ends
until the line ending. Packet types are not supported by our syntax, although they are
accommodated for in our model.

Listing 4.2: Example policy input file

/* Example Policy File

====================== */

Host_A1 : Switch_A . ( Switch_B | Switch_C ) : Host_C1 // Policy 1

Host_B2 : Switch_A | Switch_B . Switch_C : Host_C2 // Policy 2

21





5
Implementation

This chapter contains a detailed description of the code we wrote in the scope of this
master thesis. The first section gives an overview of our code structure and explains
what parts of the implementation can be found where in the folder structure. Section 5.2
shows the implementation for our model, in specific which data types we used and what
functions the structs that implement our model provide. Section 5.3 introduces the policy
and topology parsers. Subsequently, Section 5.4 describes the core of our project, how we
compute the network paths with help of the timely and differential-dataflow libraries. In
Section 5.5 we show how our program can be started from the command line and what the
possible arguments are. Section 5.6 demonstrates what kinds of data we can generate to
test and benchmark our program with. Finally Section 5.7 shows our measurement tool
and its capabilities.

5.1 System-Overview

In this chapter we explain the implementation design, which part of the functionality
we put at what place within the code base. This is necessary to understand the logical
structure of our code, how components are interconnected and for what purpose. The
two subsequent chapters describe the implementation of our controller logic in detail.
Sections 5.2, 5.3 and 5.4 are about our project’s library part. This is the core of the

23



Chapter 5. Implementation

thesis, the important control logic happen there. It contains the code responsible for
parsing topologies and policies and also computes the routes while regarding the given
topology and policies. In Sections 5.5, 5.6 and 5.7 we will then provide details about the
interface to execute the code from the command line and all that belongs to it. This part
contains tools we implemented, one of which is the benchmark tool we used to produce
the measurements presented in Chapter 6.

Code Organization Our project has two code roots. The reason for this is that in
Rust, code is either part of a library or an executable. When creating a new project, the
programmer has to define which of the two project types he or she wants to build. The new
project then consists of a root file which is either src/lib.rs for a library or src/main.rs for
an executable project. In our case we have both: reusable code that belongs to a library as
well as code that can be executed directly from the command line as a binary. Fortunately
Rust allows to put both into the same project by just defining a lib.rs and additionally a
main.rs leading to two code roots. From each of those roots, the programmer can define
functions and modules, which can also be located in separate files and folders lower in the
file hierarchy. Rust provides a separate code hierarchy for each of them, encapsulated and
separated from each other. If functionality contained in the library part of the code is
needed in the main part, it must be imported as if it was taken from an external library.
This proved to be useful as it implicitly categorizes the code based on whether it is reusable
library code or only needed for the execution.

Rust also provides Cargo which acts as a build system and package manager1. For it to
work properly it needs the file Cargo.toml to be present in the root of the project directory.
This file contains the projects meta data and allows Cargo to compile the program and
resolve all dependencies. The Cargo.toml file denotes the external dependencies used in
the project, which can be imported from http://crates.io or directly from a public Git
repository. It is also the place where we define the project’s name, the author’s name and
tell Cargo to generate the documentation for the lib.rs and not the main.rs as described
in Section 5.1.

Library - lib.rs The library part of our project contains all reusable functionality which
is generic to multiple applications. It is usable like a library and offers a documentation
generated with the rustdoc tool as described in Section 5.1. In the root file src/lib.rs

1http://doc.crates.io/

24

http://crates.io
http://doc.crates.io/


5.1. System-Overview

we state the external crates we use and define the first submodules: model, parser and
computation. The first contains the code that belongs to the model, namely structs for the
topology, policy and their related code. The parser module contains the policy parser,
the topology parser and the lexer which both parsers use. Finally the computation module
contains the code that calculates the actual paths and regards the constraints. This module
uses timely- and differential-dataflow libraries.

Figure 5.1: Overview Figure of all modules that are part of the code-root library with their
code location. The root module is the library and colored green. It has three sub modules:
model, parser and computation colored gray. Those themselves have submodules colored
blue.

Library
lib.rs

computation
computation/mod.rs

model
model/mod.rs

parser
model/parser.rs

topology
model/topology.rs

policy
model/policy.rs

policy parser
parser/policy_
parser.rs

topology parser
parser/topology_
parser.rs

lexer
parser/lexer.rs

run
computation/run.rs

benchmark
computation/
benchmark.rs

dataflow
computation/
dataflow.rs component

computation/
component.rs

utility
computation/utility.
rs

Executable - main.rs This part of the code is the entry point for executing our project
from the command line. E.g. to run the code with a certain topology and policy or
to run measurements. Currently the main.rs offers a command-line interface. If in the

25



Chapter 5. Implementation

future one may need a graphical user interface, it will be also located here. The root
file for the executable is src/main.rs. Within this file itself the command line argument
parsing is done and a normal execution of the SDN controller can be launched. The only
module defined here is main_tools, which contains all the tools needed for the executable,
most notably generate.rs and measurement.rs. The former offers generator functions for
topologies, policies and update batches. The latter contains enhanced execution functions
which allow for precise analysis of the library run times on different inputs and allows to
pretty-print its results to the terminal.

Figure 5.2: Overview Figure of all modules that are part of the code-root main with their
code location. The root module is the main and colored green. It has one submodule
colored gray which itself has two submodules colored blue.

Main
main.rs

main tools
main_tools/mod.rs

generate
main_tools/generate.
rs

measurement
main_tools/
measurement.rs

Code Documentation The Rust language offers two types of code comments: docu-
mentation comments and inline code comments. The rustdoc tool is able to generate a
HTML document from documentation comments. Those comments can be above func-
tion definitions, structs, type definitions, module definitions, structs or enums and their
respective fields. They cannot be within function bodies or directly before expressions in
general. Lines containing documentation comments start with “///” compared to the “//”
for normal comments. The comments can contain Markdown2 to format the text layout
which rustdoc then translates to HTML. Rust can only generate a HTML documentation
for either the library or executable, so we chose to create one for the former. In our project
we were only able to use documentation comments for the library part. We documented
the executable directly in the source code with inline comments where necessary.

2http://daringfireball.net/projects/markdown/

26

http://daringfireball.net/projects/markdown/


5.2. Model

5.2 Model

In the following we describe the implementation of our model as introduced in Chapter
4. This encompasses the topology and policy, which can be found at their locations
src/model/topology.rs and src/model/policy.rs. We often use public fields instead
of making them private and using setter and getter functions. The latter would also be
reasonable but we opted for simplicity. This can easily be changed later.

5.2.1 Topology

The following Section describes the module topology which corresponds to our model
for topologies described in Chapter 4. The module contains primitive type definitions,
constants, the trait ‘Node’, the struct ‘Host’, the struct ‘Switch’, the struct ‘UpdateBatch’
and the struct ‘Topology’.

Primitive Types To provide an abstraction for the primitive types we use and improve
the code readability, we introduced new type names. Switches and hosts have unique node
ids of type NodeId, which itself is a u32. Connections are selected by providing their LinkId

internally also mapping to a u32. Packet types are identified by an u32 as well. Connections
weights or distances are represented by the type Weight which maps to a u64.

Constants We defined a few constants to represent placeholders if the value of some
field is unknown or should represent all possible values. In place of a NodeId we also
allow const NODE_UNKNOWN and const NODE_WILDCARD representing an unknown or all nodes
respectively. The former is used when doing hops to the next node in the computation.
For packet types const PACKET_WILDCARD is a possible placeholder. We use this when defining
flow identifiers (see Section 4.2) for all packet types. It is also used in combination with
NODE_WILDCARD to depict all flows going to a certain node without regarding the source.
Finally, for weights we allow const WEIGHT_UNKOWN, which we use within the distance to a
neighbor node is not yet known, e. g. directly after doing a hop.

‘Node’ Trait The Node trait is an abstraction for entities that can either be a host or
switch. Every node has a name and unique node-id. So each type implementing the trait

27



Chapter 5. Implementation

has to offer the function get_name() and get_node_id() which return the node’s name as a
&str and its node-id as a NodeId.

pub trait Node {

fn get_name(&self) -> &str;

fn get_node_id(&self) -> NodeId;

}

‘Host’ Struct This struct stores data container for host entities. We outline its im-
plementation in the code below. It offers fields for its node-id, name and parent switch’s
node-id. Also it implements the trait Node and additionally offers a constructor-like func-
tion new(), which makes the creation of new host objects less verbose.

pub struct Host {

pub id: NodeId,

pub name: String,

pub switch_id: NodeId

}

impl Host {

pub fn new(id: NodeId, name: String, switch_id: NodeId) -> Self { ... }

}

impl Node for Host { ... }

‘Switch’ Struct A Switch struct stores its node-id, name and also a set containing the
node-ids it is connected to. We show the implementation outline in the code below. It
contains a constructor-like function new() and three procedures to query or modify the
switch’s neighbors. connect_to() adds the given node-id to the list of nodes connected
to the switch and panics if this connection already exists. disconnect_from() removes the
given node-id from the same list and panics if the connection did not exist before calling
the function. Finally is_connected_to() returns whether the switch is connected to the
node with the given id. Because the struct also implements the trait Node, there also
exist the functions to get the switch’s node-id and name.

pub struct Switch {

pub id: NodeId,

pub name: String,

pub connected: HashSet<NodeId>,

28



5.2. Model

}

impl Switch {

pub fn new(id: NodeId, name: String) -> Self { ... }

fn connect_to(& mut self, other: NodeId) { ... }

fn disconnect_from(& mut self, other: NodeId) { ... }

pub fn is_connected_to(& self, other: NodeId) -> bool { ... }

}

impl Node for Switch { ... }

‘Topology’ Struct The Topology struct is the most extensive one within our project.
It consists of three Vec objects named hosts, switches and connections which store the
topology’s nodes and links. We show the code that declares the struct below and in a
separate block the implementation. To allow the access of switches and hosts by their
names or node-ids, it also contains four maps, e.g. host_name_i_map, where i is an abbre-
viation for “index”. The topology’s implementation offers two constructor-like functions,
one to initialize the underlying data-structures with certain sizes and another one if those
sizes are not know a priori. To manipulate the topology’s hosts, switches and connections,
getter and setter functions are defined. Hosts and switches can be obtained by their node
id, name or index among all hosts or switches respectively (e.g. the 3rd switch of the 10
available ones, we need this for the Jellyfish generator). The topology also offers query
functions, to check if a host or switch with a certain name exists and of course functions to
add new or remove existing hosts, switches and connections. To determine the topology
size in regard to number of hosts, switches or connections, queries are available, e. g.
get_host_n(), where emphn means “number”.

pub struct Topology {

id_counter: u32,

hosts: Vec<Host>,

switches: Vec<Switch>,

connections: Vec<Connection>,

host_name_i_map: HashMap<String, usize>,

host_node_id_i_map: HashMap<NodeId, usize>,

switch_name_i_map: HashMap<String, usize>,

switch_node_id_i_map: HashMap<NodeId, usize>

}

29



Chapter 5. Implementation

impl Topology {

pub fn new() -> Topology { ... }

pub fn with_capacity(n_hosts: u32, n_switches: u32, n_connections: u32)

-> Topology { ... }

pub fn generate_node_id(&mut self) -> NodeId { ... }

pub fn available_node_id(&self) -> NodeId { ... }

pub fn get_host(& self, id: NodeId) -> &Host { ... }

pub fn get_ith_host(& self, i: usize) -> &Host { ... }

pub fn all_hosts(& self) -> Vec<Host> { ... }

pub fn get_host_n(& self) -> usize { ... }

pub fn get_host_node_id(& self, name: &str) -> Result<NodeId, String> { ... }

pub fn has_host_with_name(& self, name: &str) -> bool { ... }

pub fn add_host(& mut self, host: Host) -> Result<(), String> { ... }

pub fn get_switch(&self, id: NodeId) -> &Switch { ... }

pub fn get_ith_switch(&self, i: usize) -> &Switch { ... }

pub fn all_switches(&self) -> Vec<Switch> { ... }

pub fn get_switch_n(& self) -> usize { ... }

pub fn get_switch_node_id(& self, name: &str) -> Result<NodeId, String> { ... }

pub fn has_switch_with_name(& self, name: &str) -> bool { ... }

pub fn add_switch(& mut self, switch: Switch) -> Result<(), String> { ... }

pub fn all_connections(&self) -> &Vec<Connection> { ... }

pub fn get_connection(&self, id: LinkId) -> &Connection { ... }

pub fn get_connection_n(&self) -> u32 { ... }

pub fn is_connected(& self, a: NodeId, b: NodeId) -> bool { ... }

pub fn add_bidir_connection(& mut self, conn: Connection) { ... }

pub fn remove_connection(& mut self, connection_id: LinkId)

-> Connection { ... }

}

‘UpdateBatch’ Struct An UpdateBatch struct represents a set of changes to the topol-
ogy consisting of removals and additions of connections. We define the struct in the file
topology.rs. It is used to store changes that can be applied to an existing topology. To
do this it contains two lists removals and additions. A creator function is there to allow a
less-verbose initialization with two empty lists. Most notable of this struct is that it im-
plements the trait Display to create a human-readable output explaining what its content
is.

30



5.2. Model

pub struct UpdateBatch {

pub removals: Vec<Connection>,

pub additions: Vec<Connection>,

}

impl UpdateBatch {

pub fn new() -> UpdateBatch { ... }

}

impl fmt::Display for UpdateBatch { ... }

5.2.2 Policy

This section describes the module policy which corresponds to our policy model we describe
in Chapter 4. It contains the struct ‘FlowId’, the struct ‘Policy’ and the enumeration
‘Constraint’.

‘FlowId’ Struct The struct FlowId implements our representation of a flow id presented
in Section 4.2. We show the code in the snippet below this paragraph. As described in the
model, a flow id provides fields for the source and destination host in the form of node-ids
and also a field storing the packet type as PacketType. The struct offers three creator-like
functions. some_from_to() which creates a new flow id with all fields set. all_from_to()

instantiates a flow id for packets of all types from a certain host to another one. Finally
all_to() generates a flow id for all packets to a certain destination. We implemented
the fmt::Display trait, which is used for a human-readable output of to_string() among
others. All structs that should later be used as part of data-tuples in a differential-
dataflow computation need to implement this trait. It automatically implements the trait
Abomonation for a given struct.

pub struct FlowId {

pub src_id: NodeId,

pub dest_id: NodeId,

pub packet_type: PacketType,

}

unsafe_abomonate!(FlowId : src_id, dest_id, packet_type);

31



Chapter 5. Implementation

impl FlowId {

pub fn some_from_to(packet_type: PacketType, src: NodeId, dest: NodeId)

-> FlowId { ... }

pub fn all_from_to(src: NodeId, dest: NodeId) -> FlowId { ... }

pub fn all_to(dest: NodeId) -> FlowId { ... }

}

impl fmt::Display for FlowId { ... }

‘Policy’ Struct The Policy struct consists of only two fields, the code implementing
it is shown below this paragraph. Its first field flow stores which flow id the policy is
concerning as type FlowId. The second field constraint contains the actual constraint and
is of enum type Constraint.

pub struct Policy {

pub flow: FlowId,

pub constraint: Constraint

}

‘Constraint’ Enumeration The enumeration type Constraint implements our repre-
sentation from Section 4.2. As can be seen in the code snippet below, a constraint can
be one of four possible types. First it can be of type Id(switch) where switch denotes an
element of type Switch. Also it can be one of the binary types And or Or, which recursively
contain two boxed objects of type Constraint themselves. Finally it can also be of type
Not, also wrapping a boxed constraint. The boxing is necessary so the element size is
known at compile-time, otherwise the compiler will complain. We explain this detailed in
Section 2.1 of the Chapter Preliminaries. To print the constraint in a format defined in
the input file syntax we also implemented the fmt::Display trait. For pretty-printing the
constraint-tree hierarchically, we also implement fmt::Debug.

pub enum Constraint {

Id(Switch),

And(Box<Constraint>, Box<Constraint>),

Or(Box<Constraint>, Box<Constraint>),

Not(Box<Constraint>)

}

32



5.3. Parsers

impl fmt::Display for Constraint { ... }

impl fmt::Debug for Constraint { ... }

5.3 Parsers

We defined a specific syntax for policy input files in Section 4.2 and another one for
topologies in Section 4.1. They are used as input to compute the routing tables. We
now introduce the parsers we used to create our internal data types from this input. Both
parsers are so called recursive descent parsers, which are top-down parsers that recursively
call member functions until they reach an atom of the grammar. They build upon a lexer
we built for this purpose, also described in this Section. We also use this lexer to parse
the benchmark input file as described in Section 5.7.2.

‘Result’ Enumeration Throughout the following subsections we often refer to the enu-
meration type Result Rust provides. We show its declaration in Listing 5.1. This construct
is intended to be a type used by functions that perform an operation that can possibly
fail. It contains two possible types, Ok(T) and Err(E). The types T and E define what kind
of objects are returned in the case of success or an error.

Listing 5.1: Declaration of Rust’s enumeration Result defined in std::result.

enum Result<T, E> {
Ok(T),
Err(E)

}

5.3.1 Lexer

The lexer is a foundation for the parsers. Its code is located in src/parser/lexer.rs within
the project. We show the struct lexer declaration and implementation in a code snipped
below. Also we present the token type our lexer is based on.

33



Chapter 5. Implementation

‘Token’ Enumeration Tokens are objects of enumeration type Token, shown in Listing
5.2. They constitute the smallest logical unit in our topology and policy syntax. A token
can represent single symbols, strings acting as identifiers or also numbers. The Token::Star

for example represents the symbol “*”, Number(U64) is a number.

Listing 5.2: Declaration of the enumeration Token.

pub enum Token {
Invalid(String),
Id(String),
Number(u64),
Colon,
Pipe,
Dot,
Not,
ParenthesisOpen,
ParenthesisClose,
Star,
Comma,
End,

}

‘Lexer’ Struct The struct Lexer offers two fields as shown in the code snippet below.
chars stores the string given to the lexer as a Peekable of characters. This is an iterator
that allows to peek at the next element without consuming it. The second filed is buffer

containing a Token. We used it to make our lexer peekable. The buffer always contains a
Token, which is the next one that would be returned by the lexer, but can also be peeked
without being returned. Upon retrieving an item (so not peeking it), our lexer returns the
buffered token and puts the next token in its place. The chars field is also denoted by the
lifetime parameter ’a. It tells the compiler, that this field’s content needs to outlive the
lexer. This is part of Rust’s lifetime concept and the reason it does not need a garbage
collector. Without this remark the program would not compile.

pub struct Lexer<’a> {

chars: Peekable<Chars<’a>>,

pub buffer: Token,

}

Public Interface The public interface offers five functions in total. The first one is a
creator-like function new(), takes a string as argument and returns a new lexer. consume()

34



5.3. Parsers

moves its internal pointer to the next token and returns the old active one. peek() and
peek_clone() only show the current token, without moving the pointer. When called re-
peatedly, they always return the same token or a reference to it. Last function of the public
interface is has(), which returns a boolean depicting whether the input string’s end was
already reached. All methods returning tokens repeatedly pass Token::End after reaching
the end. We show the headers of all functions, public and private, in the following code
snippet.

impl<’a> Lexer<’a> {

pub fn new(input_string: &’a str) -> Lexer<’a> { ... }

pub fn has(& self) -> bool { ... }

pub fn peek_clone(& self) -> Token { ... }

pub fn peek<’b>(&’b self) -> &Token { ... }

pub fn consume(& mut self) -> Token { ... }

fn get_next_token(& mut self) -> Token { ... }

fn skip_blanks_and_comments(& mut self) -> Option<Token> { ... }

fn skip_blanks(& mut self) -> bool { ... }

fn skip_comments(& mut self) -> Option<Token> { ... }

}

Internal Functions There are also four private helper functions. The first one is
get_next_token(), which performs the actual work of converting the string into tokens.
For this it utilizes the helper function skip_blanks_and_comments(), which skips comments,
blanks, linefeeds and tab characters. The function skip_comments() tries to skip single-line
and multi-line comments. Finally skip_blanks() skips all space, linefeed and tab characters
and returns a boolean depicting whether any characters were skipped. This is necessary
for skip_comments_and_blanks() to know, because after each skipped character, a new com-
ment can start. If there was no character skipped, the function can return. All functions
related to skipping comments return a Token::Invalid(str) in case of an error while parsing
the input string, where s contains the encountered invalid character sequence. It is not
possible to solve this in a different way, because Peekable, the trait we use to access the
string, allows no lookahead.

35



Chapter 5. Implementation

5.3.2 Topology Parser

The topology parser allows to transform a valid input file into a Topology struct. We
introduced the input file syntax in Section 4.1 and show the topology data type structure
in Section 5.2.1. The code can be found in the file src/parser/topo_parser.rs, which denotes
the module topo_parser.

Public Interface To use the parser we provide two public functions, both shown in
Listing 5.3. They allow to either parse a file or a string containing the topology defini-
tion. After the parser finishes successfully, it returns an Ok(topo) result, where topo is of
type Topology. When an error occurs during the parsing process, the functions return an
Error(message) result, where message is a string containing an error description.

Listing 5.3: Public interface of module topo_parser.

pub fn parse(topo_string: &str, verbose: bool) -> Result<Topology, String> { ... }
pub fn parse_file(file: &str, verbose: bool) -> Result<Topology, String> { ... }

‘TopologyParser’ Struct Each struct TopoParser consists of two fields. The first one,
lexer, stores a Lexer<’a> as defined in 5.3.1. topo contains the topology which is in the
process of being created by the parser. The following code declares our topology parser
struct:

pub struct TopologyParser<’a> {

lexer: Lexer<’a>,

topo: Topology,

}

Internal Functions To provide the interface we described previously, a set of internal
non-public functions are required. We show their headers in the code below this paragraph.
The creator-like function new() creates a new parser by accepting an object of type Lexer,
introduced in Section 5.3.1. Then there are many functions parsing certain parts of our
topology input syntax as defined in Section 4.1. They are all named after the same scheme,
starting with consume_ and ending with the construct name they parse. So for example the
function consume_host() parses a host. Upon successful parsing the language construct,

36



5.3. Parsers

the functions all return a result Ok() containing an object of the right type or nothing in
case only a single symbol was parsed. When errors occur, an Error(message) is returned
containing a string describing the error. Root function of all those individual parsers is
parse(). It triggers the different consume functions repeatedly, until the lexer’s input is
consumed.

impl<’a> TopologyParser<’a> {

pub fn new(lexer: Lexer) -> Parser { ... }

pub fn parse(mut self) -> Result<Topology, String> { ... }

fn consume_identifier(& mut self) -> Result<String, String> { ... }

fn consume_number(& mut self) -> Result<u64, String> { ... }

fn consume_colon(& mut self) -> Result<(), String> { ... }

fn consume_star(& mut self) -> Result<(), String> { ... }

fn consume_dot(& mut self) -> Result<(), String> { ... }

fn consume_switch(& mut self) -> Result<Switch, String> { ... }

fn consume_host(& mut self) -> Result<Host, String> { ... }

fn consume_conn(& mut self) -> Result<Connection, String> { ... }

}

5.3.3 Policy Parser

The policy parser is built to parse a valid input file or string and output a list of policies.
How a valid syntax is constructed we defined in Section 4.1. All components of the parser
we describe here are located in the module policy_parser which itself is stored in the file
src/parser/policy_parser.rs.

Public Interface Same as for the topology parser, the public interface consists of two
functions as shown in Listing 5.4. One offers to parse a string and the other takes as argu-
ment the name of a file it tries to open and parse. They both return a Result<Vec<Policy>

,String>, which means they pass back a list of policies after a successful parsing process
or an error message in case something went wrong.

‘PolicyParser’ Struct We outline the struct PolicyParser in the code below this para-
graph. As the topology parser, it contains a lexer to acquires the tokens from. Second
field is a reference to the topology for which the policies should be parsed. It has lifetime

37



Chapter 5. Implementation

Listing 5.4: Public interface of module policy_parser.

pub fn parse(policy_string: &str, verbose: bool)
-> Result<Vec<Policy>, String> { ... }

pub fn parse_file(file: &str, verbose: bool) -> Result<Vec<Policy>, String> { ... }

parameter ’b meaning the referenced topology has to live at least as long as the parser,
but is unrelated to the lexer, which has lifetime parameter ’a.

pub struct PolicyParser<’a, ’b> {

lexer: Lexer<’a>,

topo: &’b Topology

}

Internal Functions The struct PolicyParser implements internal functions, comparable
to the TopologyParser described previously. All function headers of the implementation are
shown in the code snippet below. The function new() accepts a Lexer and reference to
a Topology and returns a new TopologyParser. Top level function is the method parse(),
which starts the parsing process. It returns a result, either Ok(policies), where policies is
a list of Policy objects, or Err(message) with a string containing an error message telling
the user what went wrong while parsing. The other functions all start with consume_ and
each try to parse a certain syntax construct, much like the topology parser does, which
we described in paragraph Internal Functions of Section 5.3.2.

impl<’a, ’b> PolicyParser<’a, ’b> { ... }

pub fn new(lexer: Lexer<’a>, topo: &’b Topology) -> Parser<’a, ’b> { ... }

pub fn parse(mut self) -> Result<Vec<Policy>, String> { ... }

fn consume_node_identifier(& mut self) -> Result<String, String> { ... }

fn consume_colon(& mut self) -> Result<(), String> { ... }

fn consume_constraint(& mut self) -> Result<Constraint, String> { ... }

fn consume_disjunction(& mut self) -> Result<Constraint, String> { ... }

fn consume_conjunction(& mut self) -> Result<Constraint, String> { ... }

fn consume_unary(&mut self) -> Result<Constraint, String> { ... }

fn consume_switch_id(& mut self) -> Result<Constraint, String> { ... }

fn consume_negation(& mut self) -> Result<Constraint, String> { ... }

fn consume_enclosed_constraint(& mut self) -> Result<Constraint, String> { ... }

38



5.4. Computation

}

5.4 Computation

The following section describes the module computation, which is the core of our project be-
cause it calculates the routing rules. The root module is located at src/computation/mod.rs

and contains the submodules run, benchmark, dataflow, component and utility. The last
two contain the dataflow computation definition and are using the timely-dataflow and
differential-dataflow Rust libraries. benchmark and run start those computations and provide
them with input. The utility module contains helper functionality to configure the com-
putation and translate the policies in actual tuples that are usable by the dataflow. Apart
from those submodules, the root module additionally contains three re-exports shown
below. They allow to run the computation by calling computation::run(), computation::

run_without_policies() or computation::benchmark() which are the main entry-points for
starting our routing algorithm.

pub use self::run::with_policies as run;

pub use self::run::without_policies as run_without_policies;

pub use self::benchmark::run as benchmark;

5.4.1 Run

This module is the entry point to calculate the shortest paths in terms of accumu-
lated connection weights while respecting the given policies. It is contained in the file
src/computation/run.rs. Both functions it offers are re-exported in the parent module
computation, its headers are shown below. They both accept as arguments a topology,
usize parameter n_proc defining the number of cores to use for the computation and in
case of the first function a list of policies. The flag verbose instructs the program to create
verbose output and output_tables prints the resulting routing tables after the computation
is finished.

pub fn with_policies(topo: Topology, policies: Vec<Policy>, verbose: bool,

output_tables: bool, n_proc: usize) { ... }

pub fn without_policies(topo: Topology, verbose: bool, output_tables: bool,

n_proc: usize) { ... }

39



Chapter 5. Implementation

Implementation We show the implementation of function with_policies() in the code
below this paragraph. The code in without_policies() is similar but does not regard a
policy list in its computation. On the uppermost hierarchy it contains a call to timely::

execute() which invokes a new timely-dataflow computation. This function takes as argu-
ments an object of type timely::Configuration and a closure, which is Rust’s concept of a
lambda function. We generate the configuration object in our utility module, introduced
in Section 5.4.5. The closure on the other hand is defined directly in the function code, it
contains the dataflow definition, handles the data input and finally runs the computation.
In the following we explain the code in detail by referring to the line numbers in the code
example given under this paragraph. To create the dataflow object, on line 6 we run the
function dataflow::create() which we explain in Section 5.4.3. Note that it takes as argu-
ment also the flag output_tables to include an output node to print the resulting forward
tables if desired. On line 9-11 we then input the switches, connections and policies into
the computation. Next we advance all inputs to timestamp 1 on lines 13-15, which tells
the computation that no more inputs with earlier timestamps will arrive. Finally we run
the computation by executing computation.step() as long as the probe has not processed
all tuples of period 0, which is tested for with probe.le(&RootTimestamp::new(0)).

1 pub fn with_policies(topo: Topology, policies: Vec<Policy>, verbose: bool,

2 output_tables: bool, n_proc: usize)

3 {

4 let _ = timely::execute(utility::get_timely_config(n_proc), move |computation| {

5 let policies = policies.clone();

6 let (mut switch_input, mut edge_input, mut policy_input, probe) =

7 dataflow::create(verbose, output_tables, topo, computation);

8

9 dataflow::input_switches(&mut switch_input, topo, computation);

10 dataflow::input_connections(&mut edge_input, topo, computation);

11 dataflow::input_policies(&mut policy_input, policies, topo, computation);

12

13 switch_input.advance_to(1);

14 edge_input.advance_to(1);

15 policy_input.advance_to(1);

16 while probe.le(&RootTimestamp::new(0)) { computation.step(); }

17 });

18 }

40



5.4. Computation

5.4.2 Benchmark

This Section presents the module benchmark, which runs a computation and returns the
time it took to execute the individual sub-computations. The measured steps are the
time it takes to convert the policies into PolicyTuples, to calculate the shortest-path and
generate the forward rules, to compute the additional forward rules for the policies and to
apply an update to the topology. The module is located in src/computation/benchmark.rs

and is similar to the run module introduced in the prior Section. We outline its only
public function, run(), in the code snippet below. As mentioned before, this function is
re-exported by the parent module and can be called with computation::benchmark(). It
resembles the with_policy() function from module run which we introduced in the prior
section. In the following we highlight the new code we introduced to allow the measurement
of our dataflow computation’s performance.

pub fn run(topo: Topology, policies: Vec<Policy>, updates: Option<Vec<UpdateBatch>>,

verbose: bool, output_tables: bool, n_proc: usize) -> (i64, i64, i64) { ... }

Constants and Static Variables We introduced four fields in this module. The first
one is the public constant BENCH_MAX_MS. It is the default value to which we initialize the
fields later containing the actual measurements. The chosen value for this constant is
std::i64::MAX / 3, because errors are easier to spot with a high number compared to using
zero for this purpose. We divided the value by three so the later calculations do not over-
flow. The remaining three fields are static variables containing the ongoing measurement’s
results. At the time of writing the code there was no built-in method to return values
from within a timely computation.

pub const BENCH_MAX_MS: i64 = std::i64::MAX / 3;

static mut RESULT_PARSE_MS: i64 = BENCH_MAX_MS;

static mut RESULT_DIJKSTRA_MS: i64 = BENCH_MAX_MS;

static mut RESULT_CONSTRAINTS_MS: i64 = BENCH_MAX_MS;

Private Functions The module also provides two helper functions. get_total_ms() cal-
culates the sum of all three static fields and reset_results() resets them to the constant
BENCH_MAX_MS.

41



Chapter 5. Implementation

fn get_total_ms() -> i64 { ... }

fn reset_results() { ... }

Storing Measurements We wanted to know the runtimes for individual sub parts of
the computation, so we had to conduct them within the timely closure (lines 4-17 in the
code of paragraph ‘Implementation’). Writing to static variables is not thread-safe, which
is why we had to wrap all our accesses to those fields in unsafe{ ... } blocks. Additionally
we needed to make sure only one thread conducts the writes, so we wrapped it in a
if computation.index() == 0 { ... }. The following is an example for such a write:

if computation.index() == 0 {

unsafe {

RESULT_DIJKSTRA_MS = (time::precise_time_ns() - start_d) as i64 / 1000000;

}

}

Topology Updates One of the biggest advantages of the differential-dataflow frame-
work is it’s ability to efficiently process updates of the input data. In our case we wanted
to measure how long it takes to process update batches as defined in Section 4.1. They
contain removals and additions of edges, grouped in batches of arbitrary size. We measure
how long it takes the dataflow computation to update the rules so they respect the new
topology. Our implementation which we will refer to in the following is outlined in the code
snippet below this paragraph. Each batch is input with a new timestamp and all updates
within one batch use the same timestamp. After the input is done we notify each input
handle that there will be no more tuples with timestamps lower or equal than the one we
just used. Then we run the computation until all new tuples are processed on line 9. We
omitted the remaining code, which is only responsible for handling the measurements.

1 for update in updates {

2 let start_ch = time::precise_time_ns();

3 dataflow::input_connections(&mut edge_input, &update.removals, computation);

4 dataflow::remove_connections(&mut edge_input, &update.additions, computation);

5

6 switch_input.advance_to(current_timestamp + 1);

7 edge_input.advance_to(current_timestamp + 1);

8 policy_input.advance_to(current_timestamp + 1);

9 while probe.le(&RootTimestamp::new(current_timestamp)) { computation.step(); }

10 ...

42



5.4. Computation

11 }

5.4.3 Dataflow

In this section we describe the Dataflow module located in src/computation/dataflow.rs. It
contains functions to create new dataflow computations to compute forwarding rules and
input data into them. For this it accepts the data types we created and outputs Handle

types defined by the timely-dataflow library. In the following we show the function headers
and explain what they are used for.

Creator Functions The module offers two different functions to create a new dataflow
computation. create() accepts as parameters the list of switches, the flag verbose for
verbose output, another flag output_tables and the parameter computation. This last pa-
rameter is a handle to the timely environment which we need to invoke new computations.
The flag output_tables sets whether the resulting tables with the forwarding rules should
be printed when the computation is done. As a result the function returns a tuple con-
sisting of four fields, a probe and three input. The first one of those is a switch input,
the second one is a connection input and the third one is a ConstraintTuple input. We
introduce the type ConstraintTuple in Section 5.4.5.
The other available creator function is create_without_policies(), which again accepts the
flag output_tables, a handle to the computation and a list of switches. The function re-
turns a tuple, containing the same fields as before but without the input for tuples of type
ConstraintTuple. The difference to the other function is the internal dataflow graph of
the computation, which does not contain the additional logic needed to output the rules
resulting from the policies.

pub fn create(verbose: bool, output_tables: bool, switch_list: Vec<Switch>,

computation: &mut scopes::Root<timely_communication::allocator::generic::Generic>)

-> (

input::Handle<Timestamp, (NodeId, i32)>, input::Handle<Timestamp, (Edge, i32)>,

input::Handle<Timestamp, ((u32, FlowId, u32, u64), i32)>,

probe::Handle<timely::progress::nested::product::Product<RootTimestamp, Timestamp>>)

{ ... }

pub fn create_without_policies(output_tables: bool, switch_list: Vec<Switch>,

computation: &mut scopes::Root<timely_communication::allocator::generic::Generic>)

43



Chapter 5. Implementation

-> (

input::Handle<Timestamp, (NodeId, i32)>, input::Handle<Timestamp, (Edge, i32)>,

probe::Handle<timely::progress::nested::product::Product<RootTimestamp, Timestamp>>)

{ ... }

Input Functions Our module offers three different input functions. They allow the in-
put of connections, policies and switches into our dataflow computation. We list their head-
ers in the code snippet below. They all accept as input parameter the computational scope
and a list of the data it should remove. input_connections() takes a std::Vec of Connection

objects. input_switches() accepts a std::Vec of Switches. Finally input_policies() takes a
std::Vec of ConstraintTuple objects, described in Section 5.4.5.

pub fn input_connections(edge_input: &mut input::Handle<Timestamp, (Edge, i32)>,

connections: & Vec<Connection>,

computation: &mut scopes::Root<timely_communication::allocator::generic::Generic>)

{ ... }

pub fn input_policies(

policy_input: & mut input::Handle<Timestamp, (ConstraintTuple, i32)>,

policies: Vec<Policy>, topo: & Topology,

computation: &mut scopes::Root<timely_communication::allocator::generic::Generic>)

{ ... }

pub fn input_switches(switch_input: & mut input::Handle<Timestamp, (NodeId, i32)>,

switches: Vec<Switch>,

computation: &mut scopes::Root<timely_communication::allocator::generic::Generic>)

{ ... }

Removal Function The remaining function is used to remove connections from the
dataflow computation. It accepts the computational scope and a list of connections to be
removed as parameters. We show its header in the following code:

pub fn remove_connections(edge_input: & mut input::Handle<Timestamp, (Edge, i32)>,

connections: & Vec<Connection>,

computation: &mut scopes::Root<timely_communication::allocator::generic::Generic>)

{ ... }

44



5.4. Computation

5.4.4 Component

The following section describes the module component located at src/computation/component.

rs. This is the logical core of the project and a main contribution of this thesis. It contains
definitions of differential-dataflow graphs, which we use to generate dataflow computations
in module dataflow. We also define ten data types of which four are tuple types we use
within the dataflow computation.

Type Definitions We grouped the type definitions of this module into tuple and prim-
itive types. Both of them are shown in the code snippet below.
The primitive type Timestamp is used to identify input epochs in the timely computation.
Each input tuple given to a computation is assigned exactly one timestamp. The three
types SwitchId, ForwardId and IntmdtId are aliases of type NodeId which we introduced to
improve code readability. A SwitchId is a node-id that can only belong to a switch. Objects
of type ForwardId denote the node which comes next on the shortest path to the destina-
tion. Finally an IntmdtId is also the id of an intermediate switch that must be reached
before going to the final destination of the packet. As such they are used in handling
the constraints on the path. Priority is a type used for the priorities of rules where a
higher number means a higher priority. We need priorities so we can partially override
other rules. This is necessary for compliance to the given policies. AccWeight is a synonym
for the type Weight. It is also intended to improve code readability and designates an
accumulated weight. This means it can be the distance between two nodes in the graph
that are not necessarily direct neighbors.
The tuple type Edge models a connection with certain Weight and two NodeId fields. A
FwdRule depicts a routing rule to be deployed on a switch in the network. It contains
the switch’s node-id, a Priority, the packet-stream’s FlowId, Weight and a ForwardId. The
IntermediateTuple extends FwdRule with an IntmdtId, AccWeight and a VariantId. They are
used within the computation of additional tuples resulting from the policies. If there exists
a policy for a certain flow-id that contains at least one OR constraint, more than one possi-
ble path exist. We need an IntmdtTuple for every hop on all possible paths. To assign each
tuple to exactly one path we use the VariantId. Section 5.4.5 explains how we translate
policies to processable input tuples.

45



Chapter 5. Implementation

pub type Timestamp = u32;

pub type SwitchId = NodeId;

pub type ForwardId = NodeId;

pub type IntmdtId = NodeId;

pub type Priority = u32;

pub type AccWeight = Weight;

pub type Edge = (NodeId, NodeId, Weight);

pub type FwdRule = (SwitchId, Priority, FlowId, AccWeight, ForwardId);

pub type IntermediateTuple = (SwitchId, Priority, FlowId, IntmdtId, Weight,

AccWeight, ForwardId, VariantId);

Functions The module defines three public functions, their headers are shown in the
code snippet below. The first one is get_fwd_rules() which defines a dataflow compu-
tation that calculates the forward rules for a network graph given as node-ids and Edge

tuples. The second function is get_fwd_rules_for_constraints() which defines a dataflow
computation that calculates the additional forward rules needed so the routing respects
the given policies. Finally the function output_fwd_rules() is used to output the calculated
forward rules with Rust’s built-in println! macro. All functions accept as parameter and
also return as result a differential-dataflow Collection.

pub fn get_fwd_rules<G: Scope>(edges: &Collection<G, Edge>,

dests: &Collection<G, NodeId>)

-> Collection<G, FwdRule>

where G::Timestamp: LeastUpperBound { ... }

pub fn get_fwd_rules_for_constraints<G: Scope>(fwd_rules: &Collection<G, FwdRule>,

constraints: &Collection<G, ConstraintTuple>)

-> Collection<G, FwdRule>

where G::Timestamp: LeastUpperBound { ... }

pub fn output_fwd_rules<G: Scope>(fwd_tables: &Collection<G, FwdRule>,

node_list: Vec<Switch>)

-> Collection<G, FwdRule>

where G::Timestamp: LeastUpperBound { ... }

Differential-Dataflow Computations Dataflow computations with the differential-
dataflow library are based on the data type Collection. To create a new computation
operator functions are applied to an input mapped to a Collection. This function itself

46



5.4. Computation

returns a Collection to which another operator can be applied to. We show the code doing
this to create our dataflow programs below.

FwdRules Dataflow Program In the following we describe the function get_fwd_

rules(). It defines the dataflow we use to compute the forward rules. The parameters
it accepts are two &Collection objects, one containing Edge objects and the other node-ids.
We show the code of the function body below and will refer to it in this paragraph.
To decrease the resource consumption we use the intermediate tuple format (SwitchId,

NodeId, Weight, FwdId) depicting a forward rule. The first field denotes the switch this
rule concerns, second is the destination id, third is the distance from the switch denoted
in the first field and the last field identifies the next node on the shortest path to the
destination. We use it instead of type FwdRule which contains fields we do not need for the
computation. This saves a lot of memory because the tuple is used to store huge amounts
of data in a typical run.
Now we describe the computation itself, which is an implementation of Dijkstra or Breadth-
First-Search respectively. At first the function initializes the computation by creating for-
ward rules for each switch saying it can reach itself with zero distance. Then it repeatedly
updates the list of reachable switches including distance for each switch to all others. This
iteration continues until a fixed point is reached. In detail on lines 13-16 it joins the list of
edges with the list of existing forward rules. This propagates for each Switch_X all nodes
it reaches to all Switch_Y to which it is connected. On lines 20-22 it then groups them
by switch-id and destination pair and keeps only the tuple with shortest distance for all
possible pairs. This sorts them by distance and only keeps the tuples with shortest one for
each possible switch and destination. After the iteration it maps the intermediate tuples
to our public FwdRule format. All forward rules get the priority zero, because they are all
unique and may be overwritten by policy-specific rules later. They also concern all types
of packets, so we assign FlowId objects created with FlowId::all_to().

1 pub fn get_fwd_rules<G: Scope>(edges: &Collection<G, Edge>, dests: &Collection<G, NodeId>)
2 -> Collection<G, FwdRule>
3 where G::Timestamp: LeastUpperBound
4 {
5 let nodes = dests.map(|x| (x, x, 0u64 as Weight, x));
6

7 nodes.iterate(|inner| {
8 let edges = edges.enter(&inner.scope());
9 let mapped_edges = edges.map( |(x,y,w2)| (x,(y,w2)) );

10

47



Chapter 5. Implementation

11 let nodes = nodes.enter(&inner.scope());
12

13 inner
14 .map( |(x,dest,w1,fwd)| (x, (dest,w1,fwd)))
15 .join_u(&mapped_edges)
16 .map( |(x, (dest,w1,_), (y,w2))| (y,dest,w1+w2,x) )
17

18 .concat(&nodes)
19

20 .map( |(n,dest,w,fwd)| ((n,dest),(w,fwd)) )
21 .group( |_,v,out| out.push( (*v.peek().unwrap().0,1) ) )
22 .map( |((n,dest),(w,fwd))| (n,dest,w,fwd) )
23 })
24 .map(|(x,dest,cost,fwd)| (x,0,FlowId::all_to(dest),cost,fwd))
25 }

FwdRules for Constraints Dataflow Program In this paragraph we present the
function get_fwd_rules_for_constraints(). It defines a dataflow computation to generate
additional forward rules needed so the given policies are respected in the routing. To do
this it breaks up the path between the source and destination host into sub-paths. For
each intermediate switch that has to be passed, additional forward rules with higher pri-
ority are inserted to lead the stream along this new path instead of the shortest direct
connection between them. The accepted parameters are a &Collection of FwdRule tuples
calculated by get_fwd_rules() and another &Collection of ConstraintTuple entities, which
are generated by utility::get_constraint_tuples() described in Section 5.4.5. In contrast
to the function fwdRules() introduced before, we now store intermediate results in local
variables and denote their type explicitly to document the code. In the code segment
below we removed comments and code that only prints intermediate results to make it
shorter and easier to read.
During the computation we use the tuple format IntermediateTuple. To join different
Collection objects we use the tuple type ((SwitchId, SwitchId), *) where “*” is a wild-
card. There the first SwitchId denotes the switch this tuple concerns and the second one is
the next destination to go to. We also use ConstraintTuple objects as an input parameter
and within the computation. As an example let us consider a policy concerning a flow id
from Host_A to Host_B asking to go through Switch_1 and then Switch_2. To respect it we
have to create forward rules instructing to first go from Host_A to Switch_1 and then to
Switch_2 before heading to the final destination Host_B.
The computation first initializes the set of additional forwarding rules with the given con-
straint tuples and assigns them the ForwardId specifying the next hop to their respective

48



5.4. Computation

IntermediatId. It does this by joining the given constraint tuples with the default for-
warding rules on lines 9-13. The function then enters a fixed-point iteration, following the
ForwardId for each tuple to generate new forward rules. For this it first conducts a hop to
the tuple’s ForwardId and then filters out all tuples that reached their destination on lines
19-23. Then on lines 25-29 it again assigns the next ForwardId by joining all new tuples
with the FwdRule tuples given as parameter. At the end of each iteration, we concatenate
the new tuples with the previously generated ones on line 31. After the iteration our
algorithm selects the best variant for each policy and returns only the tuples belonging to
those variants. This is done by first evaluating the best variant for each policy on lines
34-39. Then the result tuples are filtered to only contain the best variants on lines 41-45.
Finally the function converts the data to FwdRule tuples and returns them on line 47.

1 pub fn get_fwd_rules_for_constraints<G: Scope>(fwd_rules: &Collection<G, FwdRule>,
2 constraints: &Collection<G, ConstraintTuple>)
3 -> Collection<G, FwdRule>
4 where G::Timestamp: LeastUpperBound
5 {
6 let mapped_fwd_rules: Collection<_, ((SwitchId, SwitchId), (ForwardId, Priority, Weight))>
7 = fwd_rules.map( |(n,p,flow,dist,fwd)| ((n,flow.dest_id),(fwd,p,dist)) );
8

9 let mut new_fwd_rules: Collection<_, IntermediateTuple>
10 = constraints
11 .map( |(n,flow,i,v_id)| ((n,i),(flow,v_id)) )
12 .join(&mapped_fwd_rules)
13 .map( |((n,i), (flow, v_id), (fwd,p,dist))| (n,p+1,flow,i,dist,0,fwd,v_id) );
14

15 let mut new_fwd_rules = new_fwd_rules.iterate(|inner| {
16 let mapped_fwd_rules = mapped_fwd_rules.enter(&inner.scope());
17 let new_fwd_rules = new_fwd_rules.enter(&inner.scope());
18

19 let after_hop: Collection<_, IntermediateTuple>
20 = inner
21 .map( |(_,p,flow,i,dist,acc_dist,fwd,var)|
22 (fwd,p,flow,i,WEIGHT_UNKNOWN,acc_dist+dist,NODE_UNKNOWN,var) )
23 .filter(|&(n,_,_,i,_,_,_,_)| n!=i );
24

25 let mut new_new_fwd_rules: Collection<_, IntermediateTuple>
26 = after_hop
27 .map( |(n,p,flow,i,_,acc_dist,_,var)| ((n,i),(flow,p,acc_dist,var)) )
28 .join(&mapped_fwd_rules)
29 .map( |((n,i), (flow,p,acc_dist,var), (fwd,_,dist))| (n,p,flow,i,dist,acc_dist,fwd,var) );
30

31 new_fwd_rules.concat(&new_new_fwd_rules)
32 });
33

34 let mut best_variants: Collection<_, ((FlowId, VariantId), AccWeight)>

49



Chapter 5. Implementation

35 = new_fwd_rules
36 .filter( |&(_,_,flow,_,_,_,fwd,_)| fwd == flow.dest_id )
37 .map( |(_,_,flow,_,dist,acc_dist,_,var)| (flow, (acc_dist+dist, var)) )
38 .group( |_,v,out| out.push( (*v.next().unwrap().0,1) ) )
39 .map( |(flow, (acc_dist, var))| ((flow, var), acc_dist ) );
40

41 let mut best_fwd_rules: Collection<_, IntermediateTuple>
42 = new_fwd_rules
43 .map( |(n,p,flow,i,dist,acc_dist,fwd,var)| ((flow, var), (n,p,i,dist,acc_dist,fwd)) )
44 .join(&best_variants)
45 .map( |((flow,var), (n,p,i,dist,acc_dist,fwd), _)| (n,p,flow,i,dist,acc_dist,fwd,var) );
46

47 best_fwd_rules.map( | (n,p,flow,_,dist,_,fwd,_) | (n,p,flow,dist as u64,fwd) )
48 }

5.4.5 Utility

The module utility is located in the file src/computation/utility.rs. Its purpose is to
contain common functionality that does not fit into the other modules. This includes
the function used to convert policies into tuples our dataflow computation can process.
The module contains of two public and an additional private function. Its interface also
encompasses two public data type definitions. We explain all entities below and show the
code defining them.

Data Types The two new data types introduced in this module are VariantId and
ConstraintTuple. We show both in the code below. Type VariantId is an alias for u64 and
depicts a variant introduced by an OR operator. The second type’s name is ConstraintTuple

and represents a Tuple defined as (SwitchId, FlowId, IntmdtId, VariantId). Objects of
type ConstraintTuple are used for computing additional routing rules that result from the
given policies. We called them constraint rather than policy tuples, because the function
generates an individual tuple for each constraint in the policies.

pub type VariantId = u64;

pub type ConstraintTuple = (SwitchId, FlowId, IntmdtId, VariantId);

Functions Also part of the same model is one private and two public functions outlined
in the code snippet below this paragraph. get_timely_config() creates a new timely::

Configuration, which is required to launch a timely-dataflow computation and tells the
library how many threads should be used. The second public function has the name

50



5.4. Computation

get_constraint_tuples() and outputs a Vec containing entities of type ConstraintTuple cre-
ated from a list of Policy entities. For this it uses the private function parse_constraint().

pub fn get_timely_config(n_proc: usize) -> timely::Configuration { ... }

pub fn get_constraint_tuples(policies: Vec<Policy>, topo: &Topology)

-> Vec<ConstraintTuple> { ... }

fn parse_constraint(topo: &Topology, flow: FlowId, constraint: Constraint)

-> Vec<Vec<SwitchId> > { ... }

Meaning of ‘ConstraintTuple’s As we previously described, constraint tuples depict
the type (SwitchId, FlowId, IntmdtId, VariantId). The SwitchId marks which switch is
concerned by the tuple. This switch has to forward packets belonging to the defined
FlowId not to to its final destination but first to an intermediate switch with the node-id
IntmdtId. Because each OR constraint doubles the total number of possible different paths,
we also need VariantId, which gives each possible path a unique id.

Creation of ‘ConstraintTuple’s We create the constraint tuples with help of the
function parse_constraint() shown below. It gets as input a reference of the topology,
flow-id and the constraint. The returned result is a set of lists containing ids. Each
contains all ids of a path variant in the order they should be traversed by packets leaving
the source before they reach the destination. To create those lists parse_constraint() makes
a case-distinction on the given constraint. If it is a Constraint::Id() the function returns
a new set with exactly one list containing a single id. In case it is a Constraint::Or() the
function recursively evaluates the set of lists for both of its children and then merges them.
Finally if it is an Constraint::And() the function again recursively evaluates the set of lists
for both children and fills a new set with all possible pairs combining one list of the one
set with another list from the other set. To show that this is correct, we provide a small
example in the following paragraph.

fn parse_constraint(topo: &Topology, flow: FlowId, constraint: Constraint)

-> Vec<Vec<SwitchId> >

{

match constraint {

Constraint::Id(node) => {

let intermediate_list = vec!(node.id);

51



Chapter 5. Implementation

let table = vec!(intermediate_list);

table

},

Constraint::And(box1, box2) => {

let table1 = parse_constraint(topo, flow, *box1);

let table2 = parse_constraint(topo, flow, *box2);

let mut new_table = Vec::<Vec<SwitchId> >::new();

for intermediate_list1 in &table1 {

for intermediate_list2 in &table2 {

let mut new_list = intermediate_list1.clone();

for intermediate_id in intermediate_list2 {

new_list.push(*intermediate_id);

}

new_table.push(new_list);

}}

new_table

},

Constraint::Or(box1, box2) => {

let mut table1 = parse_constraint(topo, flow, *box1);

let table2 = parse_constraint(topo, flow, *box2);

for intermediate_list in table2 {

table1.push(intermediate_list);

}

table1

},

}

}

Example ‘ConstraintTuple’ Generation In the following we give an example of gen-
erating constraint tuples. For this we came up with a policy shown in Figure 5.3 and
the related topology shown in Figure 5.4. The policy instructs packets to go through
Switch A and then either to Switch B or Switch C before going to its destination Host B.
When our function parse_constraint() evaluates the given policy, it starts with the AND

constraint. It evaluates both children, one being a set with one list containing a single id
“5” and the other being the OR constraint. This OR constraint evaluates to a set of two
lists, one containing id “6” and the other “7”. The parent AND operator then merges the
set containing the list with id “5” with the two new lists resulting in a set with two lists.
One of those resulting lists contains the ids “5” and “6” and the other “5” and “7”. Those
two lists depict the two possible path variants and result in the ConstraintTuples shown in

52



5.5. Execution

Figure 5.3: Abstract Syntax Tree for Host_A : Switch_A . (Switch_B | Switch_C) : Host_B

AND

ORSwitch A (NodeId#5)

Switch B (NodeId#6) Switch C (NodeId#7)

Host A (NodeId#1) Host B (NodeId#2)

Figure 5.4: Example topology used for policy in 5.3

Switch A
NodeId#5

Switch B
NodeId#6

Switch C
NodeId#7

Switch P
NodeId#3

Switch Q
NodeId#4

Host A
NodeId#1

Host B
NodeId#2

Table 5.1.

SwitchId FlowId IntmdtId VariantId
3 src:1,dest:2,packet t:* 5 1
5 src:1,dest:2,packet t:* 6 1
6 src:1,dest:2,packet t:* 4 1
3 src:1,dest:2,packet t:* 5 2
5 src:1,dest:2,packet t:* 7 2
7 src:1,dest:2,packet t:* 4 2

Table 5.1: All ConstraintTuples resulting from policy in Figure 5.3.

5.5 Execution

In Section 5.1 we explain the split into library and execution part. This following Section
contains description of the latter in detail. We describe the command line invocation, how
the command-line arguments are parsed and what commands with which parameters are

53



Chapter 5. Implementation

available in Section 5.5.1. Next we give details about the tools we created for generating
topologies and policies in Section 5.6 and for conducting the measurements in Section 5.7.

5.5.1 Main

As already mentioned in Section 5.1 the entry point for our project is the file src/main.rs.
When invoking our program by executing cargo run or the compiled executable directly,
the main() function in this file is called. This invokes the command-line argument parser
and then calls the appropriate tool or sub function with the necessary arguments. We give
an example invocation in Listing 5.5, where the program is compiled with all optimizations
and then run. The parameters are explained in Section 5.5.2.

5.5.2 Command-Line Interface

At the beginning of the project we started out by parsing the command-line arguments
directly in the called functions. This proved to be error-prone and hard to maintain.
Rather than implementing a command-line parser ourselves we used the crate docopt3 by
adding it to our Cargo.toml. This is a Rust implementation of Docopt, a command-line
interface description language4. The idea behind Docopt is to automatically generate a
parser from the interface description, which itself must be formatted in a certain way.
This format corresponds to a typical human-readable usage description used by various
command line tools. This command-line interface usage description then also serves as the
help output shown to the user when requested through the --help flag or when the parser
encounters errors. We show the complete interface description for our executable in Listing
5.7. The parser created by the docopt crate also needs a struct type named Args containing
fields for all possible options. It then returns an instance of this type containing all the
parsed options or their standard values defined in the interface description respectively.

Invocation Example An example invocation is given in Listing 5.5 below. To compile
and run the code with all compiler-optimizations, the --release flag is used. The remaining
specified parameters are topology.in as topology input file, policies.in as policy input file,
-C8 to run the program with 8 cores and -o to output the resulting forwarding rules.

3https://github.com/docopt/docopt.rs
4http://docopt.org/

54

https://github.com/docopt/docopt.rs
http://docopt.org/


5.5. Execution

Listing 5.5: Terminal command to run differential-sdn on 8 cores and output the result.

$ cargo run --release -- topology.in policies.in -C8 -o

Benchmark Example The other example in Listing 5.6 shows a benchmark run. To
compile and run the code with all compiler-optimizations, the --release flag is used. There
other used parameters are a bench command, --fat-tree flag to measure the performance
on a Fat-Tree topology with parameter -k8 which means 8 ports per switch, -r100 to create
100 policies and -C4 to execute the benchmark on 4 CPU cores.

Listing 5.6: Terminal command to benchmark differential-sdn on 4 cores with a fat tree
topology, k=8 and 100 policies.

$ cargo run --release -- bench --fat-tree -k8 -p100 -C4

55



Chapter 5. Implementation

Listing 5.7: Command-Line Interface Description: Usage and Options.

Usage:

differential-sdn bench INPUTFILE [-R N | --runs=N] [-w N | --max_weight=N]

differential-sdn bench ((--fat-tree -k N) | (--jellyfish (-n N | --hosts=N)

(-s N | --switches=N) (-k N | --ports-per-switch=N)))

[-w N | --max-weight=N] [((-p N | --policies=N)

[--policy-length=L] )] [-C N | --cores=N] [-R N | --runs=N]

[-v | --verbose] [-o | --output-result]

[((--removal-batches=N | --update-batches=N) [--batch-size=N])]

differential-sdn parse TOPOFILE [POLICYFILE] [-v | --verbose]

[-o | --output-result]

differential-sdn generate-topo ((--fat-tree -k N) |

(--jellyfish (-n N | --hosts=N) (-s N | --switches=N)

(-p N | --ports-per-switch=N)))

[(-w N | --max-weight=N)] [(-o | --output-result)] [(-v |--verbose)]

differential-sdn TOPOFILE [POLICYFILE] [-C N | --cores=N]

[-v | --verbose] [-o | --output-tables]

differential-sdn -h | --help

Options:

-h, --help Show this screen.

-v, --verbose Enable verbose output.

-o, --output-result Enable output of tables / topology / rules.

-R N, --runs=N Number of Runs [default: 1].

-C N, --cores=N Number of cores to use [default: 1].

-n N, --hosts=N Number of hosts.

-s N, --switches=N Number of switches.

-e N, --edges=N Number of edges.

-w N, --max-weight=N Maximum edge weight [default: 100].

-p N, --policies=N Number of rules [default: 0].

-k N, --ports-per-switch=N Number of ports per switch, k-ary Fat-Tree topology.

--policy-length=L Length of rules [default: 4].

--batch-size=N Updates per batch [default: 2].

--removal-batches=N Number of removal batches.

--update-batches=N Number of update batches.

--jellyfish Create a Jellyfish topology.

--fat-tree Create a Fat-Tree topology.

56



5.6. Generate

5.6 Generate

To benchmark our work extensively we developed several tools to create input for our
program. The advantage of dynamically creating the data is that we can choose its size
arbitrarily. This especially helps with being flexible when evaluating the computation time
against the problem size. Our tools allow the creation of Jellyfish and fat tree topologies,
policies with arbitrary constraint lengths and update batches.

5.6.1 Topologies

In the following we explain how we create the two topologies our generator supports, Fat-
Tree and Jellyfish. We picked these two because they are based on completely different
concepts. Fat-Tree topologies are well adopted in the industry and Jellyfish topologies
represent the theoretic optimum in regards to resources used and path-lengths. Details on
the topology layouts can be found in Section 6.1.3.

Jellyfish The jellyfish topology generator takes as arguments the number of hosts,
switches and ports per switch. It then generates a jellyfish topology as specified by Singla
et. al. [SHPG12]. We simplify the topology building process by only supporting switches
with the same number of ports within one topology. Also we do not support the later
modification of the topology, such as the later insertion of additional switches. To get
a functional network it should be built with considerably less hosts than are possible in
theory, e. g. 2/3 of the maximum #Switches ∗#Ports per Switch.

Fat Tree The fat tree topology generator takes as argument only the parameter k.
K defines the number of ports per switch and is the main defining constant used when
constructing a Fat-Tree topology. We then construct the biggest possible topology in
regards to k to test the performance boundaries. If our algorithm performs well with this
input, a smaller topology would also not be a problem. We list the possible number of
switches and hosts in Table 5.2 below.

57



Chapter 5. Implementation

k / #Ports 4 8 16 32 48 92

Switches 20 80 320 1280 2880 10580
Hosts 16 128 1024 8192 27648 194672

Table 5.2: Topology size in regard to k

5.6.2 Policies

We can also generate policies for any given topology. The policy constraint’s length is
chosen randomly and lies between the min_rule_length and max_rule_length which are pro-
vided as parameters. In case the length should be the same for all rules, the min and max
parameter can be the same number. To keep it simple, we only generate AND constraints.
This is enough to conduct all the measurements we desired, because OR constraints also
get translated to AND constraints before the computation is actually done. The full
reasoning for this is provided in Section 6.1.2.

5.6.3 Update Batches

To simulate connection removals or weight updates in the network topology, we introduced
our representation of update batches in Section 4.1. An update batch is a set of connection
additions and removals used to model updates of a topology. We provide a function to
create removal batches which remove connections as well as a function to create update
batches which alter edge weights or completely replaces some connections with new ones.
Both take as parameters how many batches are desired, how many updates or removals
should be done per batch and a topology. The update batch generator additionally needs
the desired maximum new edge weight. They both return a list of elements with type
UpdateBatch, where each consists of a removal and an addition list, as described in Chapter
4. To remove or change data in a differential-dataflow program, one has to provide the
exact same data tuple that was given to the computation as input earlier. So we select a
random connection in the provided topology and put it in the removals list. In the case
of an update batch we put the old connection with a randomly picked new weight in the
additions list.

58



5.7. Measurement

5.7 Measurement

While writing the code and this thesis we conducted many measurements. The tool in-
troduced in the following helped us to do reliable validation and performance testing by
conducting benchmarks. It outputs them in tables which saves time and helps to obtain
reproducible results. To run quick tests we implemented a function to run a single bench-
mark by providing the parameters directly on the command line. For more detailed tests
we created a specific benchmark input file format and a function executing benchmarks
with parameters read from a file with this format. Benchmark results are internally stored
and evaluated with the help of two structs, BenchmarkResult and BenchmarkStatistic.

5.7.1 Run with Command Line Arguments

To quickly run measurements of our program one can use bench and provide parameters
directly on the command line. We already gave an example invocation in Listing 5.6 of how
to run benchmarks for Fat-Tree topologies. In Listing 5.8 we give another example, but
this time for a jellyfish topology. The arguments are a bench command and the --jellyfish

flag with parameters -n100 for 100 hosts, -s10 for 10 switches and -k16 for 16 ports per
switch. Also we use the flag -r100 to create 100 policies and -v and -o to make the output
verbose and print the result when finished. We show the full interface in Listing 5.7.

Listing 5.8: Terminal command to benchmark differential-sdn with a jellyfish topology
and 100 policies with verbose output and printing results when done.

$ cargo run --release -- bench --jellyfish -n100 -s10 -k16 -p100 -v -o

5.7.2 Run with File Arguments

The other possibility to run benchmarks is to write an input file containing the parameters.
This allows to run a whole set of measurements sequentially without user intervention. We
allow to define an arbitrary number of benchmark sets in a single file. To further improve
the process we also allow parameter ranges to be used in the input files. This means that
instead of only providing a single parameter, a set of several different ones can be given.
E.g. the user can specify to run it with 1, 2, 4 and 8 cores instead of having to create a

59



Chapter 5. Implementation

separate benchmark set for each of those. When several parameter ranges are given, all
possible combinations are measured.

Execution example Listing 5.9 shows an invocation example of a benchmark using an
input file. The used parameters are a bench command, benchmark.in as input file for the
benchmark-parameters and -R5 to instruct the tool to run each measurement 5 times and
output the minimum, maximum and average time measured.

Listing 5.9: Terminal command to benchmark differential-sdn through 5 runs on the pa-
rameters provided in the file benchmark.in.

$ cargo run --release -- bench benchmark.in -R5

Input File Syntax Listing 5.10 shows an example for a possible benchmark input file.
We will refer to this example throughout the paragraph. Using comments in the file is very
useful to give it structure. Single-line comments start with “//” and multi-line comments
are enclosed within “/*” and “*/”. Each benchmark input file can contain arbitrary many
input parameter sets, which provide the parameters in a certain defined order. In the
example we have two such sets, one going from line 1 to 5 and the other from line 7 to 14.
Every parameter within a set can either be a range as on line 2 or a single number as on
line 3. The former consists of several numbers separated by commas “,”. First parameter
of each set is always the topology type, which is either fattree, jellyfish or j_fixhost.
j_fixhost also constitutes the jellyfish topology, but with a fixed number of hosts. For Fat-
Tree topology types the following parameter ranges must be the number of cores followed
by k, the amount of policies and the policy length. For jellyfish topology types the order is
number of cores, switches, ports per switch, policies and the policy length. When using a
fixed number of hosts, they are given before the policies, as seen on line 12 in the example.

60



5.7. Measurement

Listing 5.10: Example benchmark parameter input file.

1 /* Topo */ fattree

2 /* Cores */ 1, 2, 4, 8, 16, 32, 64

3 /* k */ 32

4 /* Policies */ 100000

5 /* P_len */ 2, 4, 10

6

7 // fat tree topology with k=32 has 1280 switches and 8192 hosts

8 /* Topo */ j_fixhost

9 /* Cores */ 1, 2, 4, 8, 16, 32, 64

10 /* Switches */ 1280

11 /* Ports per Switch */ 32

12 /* Hosts */ 8192

13 /* Policies */ 100000

14 /* P_len */ 2, 4, 10

Parameter Set Parser To support the input file syntax as depicted above, we imple-
mented three small parsing functions, building upon the same lexer as our topology and
policy parser introduced in Section 5.3. The functions consume_number() and consume_id()

try to parse a number or an identifier respectively. consume_range() also tries to consume
a number and if the following character is a comma “,” it consumes the comma and then
tries to parse another number. It continues to do so until the character after a consumed
number is not a comma anymore. Then it returns a vector of all parsed numbers, repre-
senting the parameter range. In case any of the above functions fail during parsing they
prematurely exit the program with a short error message.

5.7.3 Data Types

In order to model the benchmark results, we created two new structs. BenchmarkResult

stores the run times of a single benchmark run. To combine several of those, we also
created the struct BenchmarkStatistic, which combines all benchmark runs with the same
parameters. We describe them in detail below.

Benchmark Result As mentioned before, a benchmark result corresponds to a single
run with a certain set of parameters. Note that this means a single actual parameter for

61



Chapter 5. Implementation

each possible one and does not include ranges as described above. It stores the run times of
all the individual stages of the computation. This includes parsing the policy, converting
it to dataflow tuples, calculating the shortest paths without constraints and generating
the additional forwarding rules needed for the constraints. Run times are stored in fields
of type i64 to avoid casting before doing calculations on them, as the numbers can become
negative in the process. We implemented a few helper functions for the struct, most
notably apply() and merge(). The former applies a certain function given as parameter
to all four stored run times. The latter merges a BenchmarkResult with another one by
using the provided merging function, which takes two i64 as input and outputs a new i64.
Both of these helper functions are used within the struct BenchmarkStatistic described in
the next Section. Also we provide an implementation of the std::fmt::Display trait, so
benchmark results can be printed with println!("{}", benchmark_result).

Benchmark Statistic The BenchmarkStatistic struct is a collection of arbitrary many
BenchmarkResult objects. We intend it to represent a benchmark series run with the same
parameters, so the minimum, maximum and average can be calculated easily. This can
then be used to evaluate those over a e.g. 5 runs. To calculate those efficiently, it utilizes
the merge() and apply() functions offered by BenchmarkResult. We also provide the imple-
mentations print_header() and print(). They allow to output the benchmark results in a
formatted way such that they later can easily be inspected or exported to programs like
excel to produce plots. We provide an example for such an output in Listing 5.11 and
5.12.

62



5.7. Measurement

Listing 5.11: Example benchmark output part 1.

1 topology cores hosts switches #p/s rules r_len parse_avg in p_min p_max conv_avg in cv_min
2 ==========================================================================================================
3 jellyfish 1 21334 1000 32 100000 4 774 ms -93 +39 478 ms -4
4 jellyfish 2 21334 1000 32 100000 4 795 ms -66 +26 486 ms -4
5 jellyfish 4 21334 1000 32 100000 4 747 ms -11 +10 461 ms -4
6 jellyfish 8 21334 1000 32 100000 4 758 ms -39 +27 455 ms -5
7 jellyfish 12 21334 1000 32 100000 4 763 ms -53 +42 464 ms -6
8 jellyfish 16 21334 1000 32 100000 4 744 ms -56 +30 566 ms -112
9 jellyfish 20 21334 1000 32 100000 4 729 ms -45 +42 578 ms -118

10 jellyfish 24 21334 1000 32 100000 4 739 ms -67 +35 689 ms -221
11 jellyfish 28 21334 1000 32 100000 4 733 ms -60 +65 491 ms -5
12 jellyfish 32 21334 1000 32 100000 4 720 ms -47 +34 714 ms -217
13 jellyfish 36 21334 1000 32 100000 4 695 ms -25 +33 503 ms -8
14 jellyfish 40 21334 1000 32 100000 4 691 ms -24 +15 628 ms -131
15 jellyfish 44 21334 1000 32 100000 4 689 ms -15 +23 561 ms -35
16 jellyfish 48 21334 1000 32 100000 4 695 ms -26 +24 738 ms -136
17 jellyfish 52 21334 1000 32 100000 4 685 ms -19 +12 911 ms -122
18 jellyfish 56 21334 1000 32 100000 4 686 ms -21 +28 826 ms -96
19 jellyfish 60 21334 1000 32 100000 4 700 ms -27 +27 909 ms -103
20 jellyfish 64 21334 1000 32 100000 4 699 ms -35 +62 1048 ms -3

Listing 5.12: Example benchmark output part 2.

1 cv_max djkstr_avg in d_min d_max constr_avg in cs_min cs_max total_avg in t_min t_max
2 ==========================================================================================
3 +5 39553 ms -79 +156 3292 ms -9 +17 43619 ms -72 +186
4 +6 22296 ms -119 +52 1747 ms -7 +8 24838 ms -92 +86
5 +5 12814 ms -63 +69 916 ms -11 +5 14477 ms -52 +79
6 +4 8674 ms -57 +88 507 ms -4 +7 9939 ms -52 +100
7 +4 7603 ms -582 +542 438 ms -16 +62 8804 ms -556 +572
8 +419 6313 ms -255 +115 400 ms -36 +23 7457 ms -279 +168
9 +411 5801 ms -148 +147 394 ms -9 +15 6924 ms -200 +163

10 +322 4891 ms -87 +93 377 ms -8 +10 6007 ms -155 +126
11 +9 4605 ms -85 +213 363 ms -4 +4 5701 ms -124 +278
12 +336 4333 ms -54 +134 371 ms -3 +8 5424 ms -63 +85
13 +8 4321 ms -82 +72 408 ms -34 +106 5424 ms -107 +64
14 +415 4067 ms -56 +53 413 ms -37 +122 5171 ms -85 +85
15 +22 3637 ms -29 +36 416 ms -43 +140 4742 ms -80 +161
16 +213 3313 ms -50 +134 416 ms -38 +141 4424 ms -95 +249
17 +132 3245 ms -66 +116 431 ms -52 +179 4361 ms -98 +276
18 +210 3178 ms -75 +121 432 ms -45 +170 4296 ms -117 +270
19 +133 3116 ms -91 +75 441 ms -61 +215 4257 ms -131 +258
20 +4 3252 ms -404 +1130 435 ms -50 +196 4386 ms -456 +1144

63





6
Evaluation

This chapter presents the different experiments we conducted in the scope of this thesis.
First we elaborate on the experimental setting in Section 6.1. We introduce the hardware
used in the measurements and list the input parameters used, namely the generated policies
and topologies. Then we show the actual experiments in the following sections. In all of
those we follow the same general structure. First we explain what we measured and
why. Then we outline what results we expected for the used input. Finally we show the
results in the form of plots, tables or both and discuss the experiments’ rationales. All
measurements were conducted with 5 repetitions using the same parameters. All results
we present are averages over those 5 runs. The complete output of all measurements we
conducted are shown in Chapter A of the Appendix.

6.1 Experimental Setting

In this first section of the chapter we introduce the experimental setting. Namely the Hard-
ware we executed the benchmarks on and the data sets we executed. Also we introduce
the topologies we used and explain our choice of topologies.

65



Chapter 6. Evaluation

6.1.1 Hardware

We conducted all of the benchmarks presented in this chapter on a Dell PowerEdge R820
rack server1. Our specific machine was equipped with four Intel® Xeon® E5-4640 proces-
sors. Each of those four processors has eight physical cores running at 2.4 GHz. They all
support HyperThreading® , so in total there are 32 physical or 64 virtual cores available
respectively. The installed memory was 512 GB of RAM in total.

6.1.2 Policies

To measure the influence of different policies on our computation, we generated various
policies. As described in Section 5.6 we generate policies with and-constraints only, because
or-constraints are translated into several and-constraints as described in Section 5.4.4. We
chose to evaluate policies with short constraint lengths of 2, 4, or 10 where 4 is the default
length. The number of policies we varied between 10k, 50k and 100k where 100k is the
default to stress test the system. A policy length of n means that every packet from
a source to a destination host has to pass exactly n intermediate nodes. Policies are
expected to be short in sizes due to the general rule to keep paths short and the particular
contained structures of data center network topologies Also as network services become
controller applications, they can be aggregated on location, effectively keeping the policy
length short. At the same time the number of policies can get quite big, as policies are
independent from each other. Also they concern only a single data flow in the network
where there can be many different in total.

6.1.3 Topologies

There are several possible topologies for data center networks that have appeared through
the years. When we picked the ones to evaluate our work on we tried to cover the different
available topology types and concepts as good as possible. One topology we use is the Jel-
lyfish topology, which is randomly generated and especially suited for random-permutation
traffic. It is very good to stress test performance with high utilization. Another one is the
Fat-Tree topology, which is hierarchical and could be considered a more traditional topol-
ogy, as it divides networks into subnets. This makes it easy to comprehend and manage

1http://www.dell.com/downloads/global/products/pedge/r820_spec_sheet.pdf

66

http://www.dell.com/downloads/global/products/pedge/r820_spec_sheet.pdf


6.1. Experimental Setting

by human administrators. In Table 6.1 we list the different parameters we used to create
the topologies for the measurements. [SHPG12, AFLV08]

Hosts Switches #Ports

Jellyfish up to 200k up to 10k 4 - 96 / Switch
Fat-Tree up to 93k up to 6480 4 - 72 / Switch

Table 6.1: Parameter range of the conducted measurements

6.1.3.1 Fat-Tree Topology

The Fat-Tree topology is an improved hierarchical network topology. In comparison to
purely hierarchical tree topologies, this topology can be built with commodity-switches
and still supports a big number of hosts. When constructing a Fat-Tree topology the
parameter k is what defines the topology layout, where k is the number of ports per
switch. In a k-ary Fat-Tree all hosts are assigned to one of the k pods, and switches are
either an Edge or Aggregation switch within one of the pods, or are assigned to the Core.
Edge switches use half of their ports to connect to hosts and the other half to connect
to Aggregation switches. Aggregation switches themselves use the remaining k/2 ports
to connect to Core switches. A Fat-Tree topology can support up to k3/4 hosts by using
k2 + k2/4 switches in total, each with k ports. [AFLV08]

Pod 0

10.0.2.1

10.0.1.1

Pod 1 Pod 3Pod 2
10.2.0.2 10.2.0.3

10.2.0.1

10.4.1.1 10.4.1.2 10.4.2.1 10.4.2.2

Core

10.2.2.1

10.0.1.2

Edge

Aggregation

Figure 6.1: Example 4-ary Fat-Tree Topology: 16 hosts and 20 4-port switches. Shows
routing from one pod to another. Source: [AFLV08, Figure 3]

67



Chapter 6. Evaluation

6.1.3.2 Jellyfish Topology

A Jellyfish topology is created by connecting exactly k or k+1 hosts to each switch, where
k is chosen such that all hosts are assigned to a switch. The remaining ports of the switches
are then used to connected the switches randomly but never the same two switches twice.
Jellyfish networks generally have a shorter average path length compared to hierarchi-
cal networks. As with the Fat-Tree topology, they can be set up with only commodity
switches which are much cheaper than the high-end switches needed at aggregation layers
of conventional topologies. Another advantage is the fact that they are easily extendable:
To insert new hardware just remove random edges and connect the newly free ports with
the new hardware. With regards to supported hosts per number of switches and ports per
switch the topology is very flexible. In theory nearly all ports of the switches can be used
to connect with hosts, but the less of the total available ports are used for hosts, the more
connections will be available for traffic routing. [SHPG12]

o

3

4

5 6

Figure 6.2: Example Jellyfish topology with 16 hosts and 20 4-port switches. Shows the
path length from one host to the others. Source: [SHPG12, Figure 1b]

6.2 Network Size Comparison

This first measurement compares Fat-Tree with Jellyfish topologies. The parameter we var-
ied is only the number of supported hosts. We fixed the number of threads to 32, the con-
straint length to 4 and the number of policies to 100k. The amount of ports per switch is al-

68



6.2. Network Size Comparison

ways the same for all switches within one measurement. In Jellyfish topologies the amount
and type of used switches can be chosen freely, so we use b2/3 ∗ ports per switchc of each
switch’s available ports to connect to hosts. The remaining d1/3 ∗ ports per switche ports
are then used to interconnect the switches.
Our expectation was that the Fat-Tree topology would use more computation time and
resources, because it needs more switches to support the same number of hosts compared
to a Jellyfish topology. In our algorithms the number of switches influences the compu-
tation time most, because it directly increases the complexity and memory consumption.
Each switch has to know the next hop for every destination so n ∗ n tuples are needed for
topologies with n switches. The results proved us right, Jellyfish seems to be much more
efficient in terms of supported host ratio. This also holds true for computation time.

In the first plot shown in Figure 6.3 we compare the two topologies in regards to supported
hosts. We picked the parameters used for the Jellyfish topology to match the supported
hosts of the Fat-Tree topology. For example one specific Fat-Tree topology uses 2880
switches with 48 ports and supports 27648 hosts, so we ran a measurement with a Jellyfish
topology using 864 switches with 48 ports. Each of those switches is connected to 32 hosts,
which leads to a topology with 27648 hosts in total. It is clearly visible in the plot that
for a Fat-Tree topology our computations need much more time compared to a Jellyfish
topology using the same type of switches and supporting the same number of hosts. This
stems from the fact that Jellyfish topologies can support more hosts per switch and the
complexity of our computation is proportional to the number of switches in the network
as mentioned before.

Figure 6.3: Compare runtime by number of supported hosts.

0 20k 40k 60k 80k 100k
0

200

400

600

Number of Hosts

T
im

e
in

Se
co

nd
s

Fat-Tree
Jellyfish

69



Chapter 6. Evaluation

In Figure 6.4 we show two more comparison of the topologies. The Fat-Tree topology is
the same as before, but the Jellyfish topology is a different one. There we did not match
the number of hosts as before, but kept the number of switches in both topologies the
same, namely 2880 switches with 48 ports each. Then the Fat-Tree topology still supports
27648 hosts and the Jellyfish topology supports 92160 hosts, which is more than triple the
amount compared to the Fat-Tree topology.
The plot in Figure 6.4a shows that when comparing the topologies in regards of used
switch numbers, they are much closer together than when comparing them by number of
supported hosts. Although the Jellyfish topology still needs less computation time, which
is most certainly due to the longer average path-length in Fat-Tree topologies. Important
to notice is the fact, that the Jellyfish topology supports many more hosts when comparing
to a Fat-Tree topology with the same number of switches and ports per switch.
In the plot shown in Figure 6.4b we compare the number of connections in the topology.
The plot shows that the number of connections does drive the total computation time. In
comparison, the Jellyfish topology is slower than a Fat-Tree one with the same number
of connections. This is due to the fact that in equally large networks Jellyfish topologies
contain far less connections compared to Fat-Tree topologies. For this reason the same
number of connections implies a higher number of switches and hosts in the Jellyfish
network. This increases runtime because the amount of switches is the main influencing
factor for the total runtime, as explained before. As before such comparisons should be
carefully interpreted due to the different host count in both topologies.

Figure 6.4: Compare runtime for same number of switches in both topologies.

(a) by number of switches

0 1k 2k 3k 4k 5k 6k 7k
0

200

400

600

Number of Switches

T
im

e
in

Se
co

nd
s

Fat-Tree
Jellyfish

(b) by number of connections

0 40k 80k 120k 160k 200k
0

200

400

600

Number of Connections

T
im

e
in

Se
co

nd
s

Fat-Tree
Jellyfish

70



6.3. Scaling with Number of Workers

6.3 Scaling with Number of Workers

The next measurements we present focus on how our implementation scales. We conducted
benchmarks by running our dataflow computations with 1 to 64 threads. The number of
threads was not increased beyond 64, because the machine we used offers 32 physical cores
supporting HyperThreading™, which leads to 64 virtual cores. This allows us to deter-
mine our project’s potential for parallelization and evaluate runtime improvements when
adding more processing power. The number of hosts in the topologies was fixed to 8192,
the amount of switches was 1280 in the Fat-Tree and 390 in the Jellyfish topology. All
switches used in this experiment offer 32 ports. We expected the runtime to decrease when
increasing the amount of used threads until reaching a saturation when the overhead for
newly added workers exceeds their benefit. This overhead stems from the communication
between the different worker threads required to exchange data and synchronize.

Figure 6.5: Different numbers of used threads; topologies with 8192 hosts.

(a) total runtime

1 2 4 8 16 32 640

20

40

60

80

100

Number of CPU Cores

T
im

e
in

Se
co

nd
s

Topology
Fat-Tree
Jellyfish

(b) speedup

1 8 16 24 32 40 48 56 640

2

4

6

8

Number of CPU Cores

Sp
ee

du
p

Fa
ct

or

Topology
Fat-Tree
Jellyfish

We show plots of our experiment’s results in Figure 6.5 and 6.6 As in the previous mea-
surements, the runtime for Fat-Tree topologies is significantly higher for the same number
of hosts compared to Jellyfish topologies. For the Fat-Tree topology saturation did not
occur but the increase in speedup for each added thread decreased as the total number of
threads increased. What went against our expectations was the fact that speedup still oc-
curred when exceeding 32 threads, which is the number of physical processors. This seems

71



Chapter 6. Evaluation

to prove that HyperThreading™ can give a slight performance boost. With the Jellyfish
topology on the other hand the speedup stalled at 32 threads and then slowly declined.
This is because the number of switches and therefore also the total computational work is
less there, so saturation occurs earlier.

Figure 6.6: Different numbers of used threads; topologies with 27648 hosts.

(a) total runtime

1 2 4 8 16 32 640
100
200
300
400
500
600
700

Number of CPU Cores

T
im

e
in

Se
co

nd
s

Topology
Fat-Tree
Jellyfish

(b) speedup

1 8 16 24 32 40 48 56 640

2

4

6

8

10

Number of CPU Cores

Sp
ee

du
p

Fa
ct

or
Topology

Fat-Tree
Jellyfish

Table 6.2 shows our measurements split up by computational steps. In the first step tagged
‘fwdrules’ all forward rules for the shortest paths within the network are calculated. The
next three steps are all related to policies. We plotted them without the runtime of the
first step in Figure 6.7. The step ‘policy parse’ measures the time needed to parse the
policy string, which creates a list of Policy objects in the memory. Afterwards in step
‘policy convert’ the time to convert those objects to tuples of type ConstraintTuple is
measured. Finally the last step ‘policy fwdrules’ calculates additional forward rules for
the policies. They override the rules generated in the first step and are needed so the
policies are respected.
The table shows that the initial computation of the forward rules for the shortest paths
is by far the most time-consuming part of the computation. This is also the reason why
it scales very well, most of the runtime improvements when adding more threads happen
here. As the table shows the runtime decreases monotonically when adding more threads,
with one exception. This exception is the computation with a Jellyfish topology and 64
threads, which takes more time than the one with 32. An explanation for this is the small
number of switches in comparison with the Fat-Tree topology. This leads to saturation

72



6.3. Scaling with Number of Workers

occuring, the total computational effort to distribute the data and perform the work is
higher when using 64 workers compared to when using only 32.

Table 6.2: Runtime for different numbers of used threads split up by computation steps.

Time in Seconds

policy

Topology Threads fwdrules parse convert fwdrules

Fat-Tree
8192 Hosts, 1280 Switches

1 85.72 0.703 0.484 5.296
2 47.452 0.72 0.482 2.897
4 28.329 0.676 0.49 1.554
8 18.708 0.685 0.491 0.883
16 14.833 0.669 0.511 0.609
32 11.401 0.682 0.549 0.531
64 9.036 0.653 1.151 0.598

Jellyfish
8190 Hosts, 390 Switches

1 5.207 0.702 0.507 3.278
2 2.924 0.725 0.508 1.789
4 1.599 0.671 0.489 0.993
8 0.991 0.675 0.491 0.56
16 0.7 0.657 0.727 0.439
32 0.501 0.643 0.754 0.404
64 0.627 0.648 1.11 0.422

The two next computational steps do not benefit by increasing the number of cores, as
they are always done on one core only. This is because these tasks are not done in a
dataflow computation but in plain Rust code. In the future this could also be done in
parallel, as the work is consisting of several independent policies that could be parsed and
converted in parallel. Finding the reason why the runtimes of those serial tasks go slightly
down upon increasing the number of workers would need more detailed investigations.
Finally the last column shows the time it took to calculate the additional forward rules
created to respect the policies. The computations of this step are done with dataflow, so
it also scales with more used workers. In contrast to the first step, saturation occurs when
going above 32 used threads. This is the same for both topologies and also happens with
bigger topology sizes. Those results can be found in de appendix.

73



Chapter 6. Evaluation

Figure 6.7: Runtime for different numbers of used threads split up by computation steps
for Fat-Tree topologies with 8192 hosts. Does not contain shortest path computation.

0 1 2 3 4 5
1
2
4
8

16
32
64

Time in Seconds

N
um

be
r

of
U

se
d

T
hr

ea
ds policy parse

policy convert
policy fwdrules

6.4 Influence of Policies

In this section we evaluate the influence of policies on the computation’s total runtime.
As we explained in Section 6.3, each run of our application first parses the policies, then
converts them to tuples the dataflow can process and finally generates additional forward
rules from those tuples. We present our measurements with different numbers of used poli-
cies in Subsection 6.4.1 and with different constraint-lengths of the policies in Subsection
6.4.2.

6.4.1 Number of Policies

In this experiment we varied the number of policies to measure their influence on the
total computation time. We evaluated the runtime with 10k, 50k and 100k policies. We
reasoned that a higher amount of policies than about 5x the number of hosts is not to be
expected. This would increase the complexity beyond the capabilities of human operators.
To test the influence on parallel computation we tested with 1 and 32 threads. Different
network sizes were also inspected, we picked 8192 or 27648 hosts and used 32-port switches
in the former and 48-port switches in the latter.

74



6.4. Influence of Policies

Table 6.3: Total runtime for different numbers of policies.

Time in Seconds

Fat-Tree Jellyfish
Topology

Size
# Policies 1 thread 32 threads 1 thread 32 threads

8192 Hosts
10k 85.446 11.861 5.845 0.672
50k 88.146 12.313 7.453 1.095

100k 89.555 12.726 9.433 1.593

27648 Hosts
10k 645.371 88.910 38.296 4.823
50k 646.478 89.478 40.562 5.269

100k 659.616 90.489 43.071 5.882

We present the resulting total runtimes of our experiments in Table 6.3. It shows that
varying the number of policies’ does not have a big impact on the computation. The
highest difference in runtime can be observed for the small Jellyfish topology, where the
policy itself is far bigger than the topology. For the bigger network increasing the number
of policies from 10k to 100k increases the runtime at most by around 17%, which is the
case for the smaller Jellyfish topology. In the case of the bigger Fat-Tree topology with
27648 hosts, the runtime even decreased. As can be seen in Table 6.4 this is because the
calculation of the forward rules for the shortest paths was faster. We discuss this in more
detail below.

75



Chapter 6. Evaluation

Table 6.4: Runtime for different numbers of policies split up by computation steps.

Time in Seconds

policy

Topology Threads Policies fwdrules parse convert fwdrules

Fat-Tree
27648 Hosts

2880 Switches

1
10k 644.585 0.108 0.064 0.678
50k 642.833 0.424 0.292 3.221

100k 652.396 0.816 0.57 6.404

32
10k 88.747 0.087 0.066 0.076
50k 88.828 0.406 0.257 0.244

100k 89.24 0.771 0.589 0.478

Jellyfish
27648 Hosts

864 Switches

1
10k 37.702 0.11 0.052 0.484
50k 37.875 0.402 0.254 2.285

100k 38.005 0.754 0.505 4.312

32
10k 4.644 0.079 0.064 0.100
50k 4.647 0.346 0.296 0.276

100k 4.703 0.703 0.653 0.476

In Table 6.4 we show the runtime split up by computational steps. The first step ‘fwdrules’
depicts the time needed to calculate all forward rules for the shortest paths within the
network. All three remaining steps are related to the policies. They measure the time it
takes to parse the topology, convert it to ConstraintTuples the dataflow computation can
process and to create additional forward rules needed so the network respects the policies.
The runtimes of steps related to policies all increase nearly proportionally with the number
of used policies. Steps ‘parse’ and ‘convert’ need approximately the same time with 1 and
32 threads used for the computation. The final policy step calculating the forward rules
decreases its runtime with 32 threads to 36% of its runtime with 1 thread in the worst and
7.5% in the best case. All those results were anticipated. What at first sight may look odd
is the runtime fluctuation in some cases for the calculation of initial forward rules in the
first step. This should not happen in theory, as the topology is the only parameter relevant
for this step which was not changed between the different measurements. We explain this
behavior with the measurements variance of several seconds between the different runs.
Refer to Chapter A in the appendix for the measurement’s maximum deviance of the

76



6.4. Influence of Policies

average results.

To compare the runtimes of the policy-steps conducted with 1 or 32 threads we created
the plots in Figure 6.8. Both show measurements for Fat-Tree topologies with 27648 hosts.
They illustrate how the runtimes of the three individual steps increase when adding more
policies. When comparing the plots, the speedup of the ‘policy fwdrules’ step with 32
threads is easily visible. In contrast the other two steps ‘parse’ and ‘convert’ do not
change their runtime at all, which was expected.

Figure 6.8: Runtime for different numbers of policies split up by computation steps for
Fat-Tree topologies with 27648 hosts. Does not contain time for forward rule computation
of shortest paths.

(a) with 1 thread

0 1 2 3 4 5 6 7

10k

50k

100k

Time in Seconds

N
um

be
r

of
Po

lic
ie

s

policy parse
policy convert
policy fwdrules

(b) with 32 threads

0 0.5 1 1.5 2

10k

50k

100k

Time in Seconds

N
um

be
r

of
Po

lic
ie

s

policy parse
policy convert
policy fwdrules

6.4.2 Policy Length Comparison

To check how the runtimes behave for different lengths of constraints in policies, we made
measurements with policy constraints of length 2, 4, and 10. We figured those would be
typical lengths, as shorter ones do not make much sense and longer ones are not easily

77



Chapter 6. Evaluation

readable by humans anymore. For our measurements we evaluated Jellyfish topologies
with 864 switches and Fat-Tree topologies with 2880 switches having 48 ports each, where
both support 27648 hosts. We ran the tests with 1 and 32 threads and 100k policies.

Table 6.5: Runtime for policies with different lengths split up by computation steps.

Time in Seconds

Policy
Length

policy

Topology Threads fwdrules parse convert fwdrules

Fat-Tree
27648 Hosts

2880 Switches

1
2 647.169 0.477 0.262 4.025
4 647.825 0.786 0.540 6.425

10 645.833 1.703 1.361 13.271

32
2 89.060 0.449 0.249 0.297
4 88.548 0.745 0.603 0.470

10 89.222 1.569 1.531 1.045

Jellyfish
27648 Hosts

864 Switches

1
2 37.801 0.472 0.250 2.829
4 37.827 0.766 0.532 4.297

10 37.442 1.618 1.430 8.676

32
2 4.700 0.438 0.282 0.321
4 4.685 0.745 0.675 0.471

10 4.720 1.503 1.794 0.919

The results are shown in Table 6.5 split up by computation steps as before. First step is
again ‘fwdrules’ which generates all forward rules for the shortest paths in the network.
Following are the policy-related steps ‘parse’ which parses the policy string, ‘convert’ which
converts the policies into ConstraintTuples and finally ‘fwdrules’ calculating the additional
forward rules so the policies are respected. We expected the results to be similar as in
the prior Section 6.4.1. The measurements proved our expectations right, runtime goes up
linearly when increasing the policy-length. As when varying the policy-lengths, runtimes
of steps related to policies all increase proportionally with the length of the used policies.
Steps ‘parse’ and ‘convert’ need about the same time with 1 and 32 threads, as the code
is not executed in parallel. On the other hand the runtime for the final step of calculating
additional forward rules for the policies decreases significantly when adding more threads to
the computation. Compared to the measurements for the number of rules, the runtime for

78



6.4. Influence of Policies

the calculation of the initial forward rules has a much lower fluctuation. All measurements
including their maximum deviation over the 5 conducted runs are again shown in Chapter
A of the appendix.

We produced two plots comparing the runtimes of the policy-steps conducted with 1 or
32 threads shown in Figure 6.9. Both show measurements for Fat-Tree topologies with
27648 hosts. As in the previous section, the time used for the parse and convert steps does
not decrease when adding more cores. In contrast to this, the forward-rules step shows an
impressive speedup. It is about 12 times faster on average than when computing with 1
thread only.

Figure 6.9: Runtime for different lengths of policies split up by computation steps for
Fat-Tree topologies with 27648 hosts. Does not contain time for forward rule computation
of shortest paths.

(a) with 1 thread

0 2 4 6 8 10 12 14 16

2

4

10

Time in Seconds

Le
ng

th
of

Po
lic

ie
s

policy parse
policy convert
policy fwdrules

(b) with 32 threads

0 1 2 3 4

2

4

10

Time in Seconds

Le
ng

th
of

Po
lic

ie
s

policy parse
policy convert
policy fwdrules

79



Chapter 6. Evaluation

Figure 6.10: Runtime for different lengths of policies split up by computation steps for
Fat-Tree topologies with 27648 hosts. Does not contain time for forward rule computation
of shortest paths.

0 1 2 3 4 5

100k * length 2
1 thread

50k * length 4
1 thread

100k * length 2
32 threads

50k * length 4
32 threads

Time in Seconds

policy parse
policy convert
policy fwdrules

Finally we also created a plot comparing the runtimes of 50k policies of length 4 with 100k
policies of length 2 for all policy-related steps with 1 or 32 threads. We show this plot
in Figure 6.10. It shows that the runtime for those two policy sets is about the same for
the individual steps. Intuitively this makes sense, as the performed work is the same for
both. The number of parsed tokens is similar, as is the amount of additionally generated
forward rules. What can also be noted is the fact that they both approximately scale the
same when adding more threads to the computation.

80



6.5. Topology Updates

6.5 Topology Updates

One of the biggest advantages of the differential-dataflow framework we use is its ability
to process changes of the input data very fast. In this section we showcase this ability
by updating the topology and then measuring how much time it takes until all changes
are processed and the forward rules are updated. We conducted three different types of
changes, removals of connections, updates of connection weights and removal of switches.
In the first subsection we show our benchmarks of connection failures. Then we decrease
or increase weights of some connections by a certain threshold. Finally we measure the
time switch failures take to recover from in the last subsection. For each of them we
measured the time until our algorithm has updated all the forward rules after the changes
were applied.
In all following measurements we evaluated Fat-Tree and Jellyfish topologies. We use
Fat-Tree topologies with 8192 Hosts and 16384 connections or 27648 Hosts and 55296
connections. The used Jellyfish topologies also support 8192 and 27648 hosts but only
need 2144 respectively 6912 connections. All smaller topologies use 32-port switches and
the bigger ones 48-port switches. Jellyfish topologies need much less connections compared
to the Fat-Tree topology because of the conceptual differences between the topologies.
The Fat-Tree topology has a hierarchical structure whereas the Jellyfish topology is built
randomly. We conducted all benchmarks with 32 threads and 100k policies if not explicitly
stated otherwise.

6.5.1 Connection Failures

In this section we present the measurements for connection failures. We removed between
2 and 10 ‰ of the topology’s connections and waited until the affected forward rules were
recomputed. Important to note is the fact that the bigger Jellyfish topology has less than
half the number of connections compared to the smaller Fat-Tree topology although it
supports more hosts.

81



Chapter 6. Evaluation

Table 6.6: Runtime to process removals of connections in batches of size between 2‰ to
10‰ of all connections in the topologies.

Time in Seconds

‰ Connections removed per batch
Topology Hosts Connections 2 4 6 8 10

Fat-Tree
8192 16384 0.500 0.751 1.146 1.303 1.677

27648 55296 4.000 6.326 7.941 10.053 12.415

Jellyfish
8192 2144 0.082 0.093 0.108 0.169 0.177

27648 6912 0.301 0.495 0.753 0.906 1.080

We present the results of our experiments in Table 6.6. It shows a near linear increase in
runtime when the number of removed connections is increased. This is expected, because
each removed connection triggers the generation of new and the removal of now invalid
forward rules. The more connections are removed, the more changes are triggered. Jellyfish
topologies seem to react much faster to changes but this is related to the fact, that the
number of affected connections is much lower, because the topology contains a much lower
number of connections in total.

Table 6.7: Runtime to process the removal of a single connection by batch-size.

Time in Milliseconds

‰ Connections removed per batch
Topology Hosts Connections 2 4 6 8 10

Fat-Tree
8192 16384 15.625 11.554 11.694 9.947 10.288

27648 55296 36.364 28.624 23.991 22.744 22.491

Jellyfish
8192 2144 20.500 11.625 9.000 9.941 8.429

27648 6912 23.154 18.333 18.366 16.473 15.652

In Table 6.7 we list the times needed per connection removal, grouped by amount of
connections removed at once. This table shows that the processing of changes is faster
when input in one bigger batch compared to several smaller ones. It also shows a difference
between topology sizes, bigger topologies need more time to process a change. The reason

82



6.5. Topology Updates

for this is that each removal potentially affects more switches and therefore triggers more
updates of forward rules.

We also prepared some plots from the data we collected. The first plot in Figure 6.11
shows the total time until the removal of x ‰ connections was processed. It visualizes
the linear increase of time it takes when increasing the number of connections that are
removed within a batch. It also clearly shows the advantage of a Jellyfish topology. If
a certain percentage of all connections fail, our controller can recover the routing much
faster when the network uses a Jellyfish topology layout.

Figure 6.11: Runtime to process connection outages in Fat-Tree and Jellyfish topologies
with 8192 or 27648 hosts.

2 3 4 5 6 7 8 9 10

0

2

4

6

8

10

12

‰ Connections removed

T
im

e
in

Se
co

nd
s

Fat-Tree, 8192 Hosts, 16384 Connections
Fat-Tree, 27648 Hosts, 55296 Connections

Jellyfish, 8192 Hosts, 2144 Connections
Jellyfish, 27648 Hosts, 6912 Connections

The next two plots in Figure 6.12 examine the runtime for connection removals in terms
of absolute numbers.
Figure 6.12a plots the number of connections removed against the time it takes. This

83



Chapter 6. Evaluation

shows that the time to recover after such an update batch is nearly proportional to the
number of connections that are removed. Our explanation for this is that a higher number
of removed connections leads to more changes in the network so more forward rules have
to be replaced. Note that we excluded the bigger Fat-Tree topology from this plot because
it removes many more connections and takes much more time than the other topologies.
Including it would skew the axes and the other plot lines would not have been clearly
visible anymore.
The second plot in Figure 6.12b shows the number of connection removals that can be
processed per second. It visualizes the capabilities of our controller to adapt the forwarding
rules in real-time for up to more than 100 connection changes per second. The first thing
to notice is the capacity difference between the network sizes. Smaller networks allow to
process a much higher number of changes per time interval. The reason for this is that
less forward rules have to be changed for each removal. If for example after a connection
removal a certain switch is only reachable through a different than the prior shortest path,
potentially many more switches have to update their forward tables accordingly in a bigger
compared to a smaller network.

Figure 6.12: Compare runtime for absolute numbers of failures.

(a) time to process failures

0 50 100 150
0

0.5

1

1.5

Connections removed

T
im

e
in

Se
co

nd
s

Fat-Tree, 8192 Hosts
Jellyfish, 8192 Hosts
Jellyfish, 27648 Hosts

(b) failures per second

10 1000

50

100

Connections removed per batch

R
em

ov
al

s
/

Se
co

nd

Fat-Tree, 8192 Hosts
Fat-Tree, 27648 Hosts
Jellyfish, 8192 Hosts
Jellyfish, 27648 Hosts

84



6.5. Topology Updates

6.5.2 Connection Weight Updates

This section shows the measurements for weight updates of the connections in the topology.
Weights can correspond to link utilization. Thus showing how we can handle frequent
changes to the topology attributes to reflect real conditions. We randomly increased or
decreased the edge weights by either 20% or 60% of their original value. Then we measured
the time until the controller processed the changes and updated all forward rules of the
network. Important to note is again the difference in absolute numbers of connections
contained in the topologies we show. A jellyfish topology is able to support more hosts
while still having less connections than a Fat-Tree topology.

Table 6.8: Runtime to process weight update of connections.

Conn.
Weight
Change

Time in Seconds

‰ Connections updated
Topology 2 4 6 8 10

Fat-Tree
8192 hosts, 16384 conn.

20% 0.498 0.694 0.948 1.247 1.308
60% 0.523 0.745 1.094 1.443 1.617

Fat-Tree
27648 hosts, 55296 conn.

20% 2.435 3.960 4.971 5.815 8.090
60% 2.724 5.127 7.157 8.650 11.319

Jellyfish
8192 hosts, 2144 conn.

20% 0.037 0.047 0.168 0.200 0.213
60% 0.038 0.071 0.187 0.216 0.226

Jellyfish
27648 hosts, 6912 conn.

20% 0.324 0.417 0.602 0.818 1.051
60% 0.362 0.456 0.711 0.953 1.092

The results of our experiments are shown in Table 6.8. It shows that the time needed to
process the updates grows proportionally with the amount of affected connections. This
was expected, because more forward rules need to be updated when more edge weights
change. Each weight change possibly introduces new shortest paths or invalidates old
ones. Processing runtime also increases when changing the weights by 60% compared to
only altering them by 20%. The reason for this is the fact that greater weight-changes
increase the likelihood for a change of shortest paths in the network. We also created two
plots shown in Figure 6.13 that depict the behavior we just described.

85



Chapter 6. Evaluation

Figure 6.13: Runtime to process weight updates.

(a) topologies with 8192 Hosts

2 4 6 8 10
0

0.5

1

1.5

‰ Connections updated

T
im

e
in

Se
co

nd
s

Fat-Tree, 20% weight change
Fat-Tree, 60% weight change
Jellyfish, 20% weight change
Jellyfish, 60% weight change

(b) topologies with 27648 hosts

2 4 6 8 10
0

5

10

‰ Connections updated
R

em
ov

al
s

/
Se

co
nd

Fat-Tree, 20% weight change
Fat-Tree, 60% weight change
Jellyfish, 20% weight change
Jellyfish, 60% weight change

Figure 6.14: Compare runtime for absolute numbers of updates in topologies.

(a) Fat-Tree topology

0 200 400 600
0

5

10

Connection updates

T
im

e
in

Se
co

nd
s

Fat-Tree, 8192 Hosts
Fat-Tree, 27648 Hosts

(b) Jellyfish topology

0 20 40 60
0

0.5

1

Connection updates

T
im

e
in

Se
co

nd
s

Jellyfish, 8192 Hosts
Jellyfish, 27648 Hosts

In two more plots contained in Figure 6.14 we show the runtime in regards to absolute
numbers of changed connections. The plots show that the runtime evolves similar for

86



6.5. Topology Updates

both topologies and is mainly dependent on the number of connections that are updated.
Generally Fat-Tree is more affected by the percentage of weight change. We isolated the
plots for each topology because the curves of the Jellyfish topologies would be very low
on the left side of the plot if we put both topologies in the same. This is because there
are less connections in a Jellyfish topology compared to Fat-Tree for the same number of
hosts. The computation time generally is less compared to Fat-Tree because there are less
links to recompute the shortest paths over leading to a smaller topology graph.

Table 6.9: Runtime to process the update of a single connection by batch-size.

Conn.
Weight
Change

Time in Milliseconds

‰ Connections updated at once
Topology 2 4 6 8 10

Fat-Tree
8192 hosts, 16384 conn.

20% 15.563 10.677 9.673 9.519 8.025
60% 16.344 11.462 11.163 11.015 9.920

Fat-Tree
27648 hosts, 55296 conn.

20% 22.136 17.919 15.018 13.156 14.656
60% 24.764 23.199 21.622 19.570 20.505

Jellyfish
8192 hosts, 2144 conn.

20% 9.250 5.875 14.000 11.765 10.143
60% 9.500 8.875 15.583 12.706 10.762

Jellyfish
27648 hosts, 6912 conn.

20% 24.923 15.444 14.683 14.873 15.232
60% 27.846 16.889 17.341 17.327 15.826

In Table 6.9 we show the times the computation needs for connection updates in batches.
Measurements were done on Fat-Tree topologies with either 8192 hosts, 1280 switches
and 16384 connections or 27648 hosts, 2880 switches and 55296 connections and Jellyfish
topologies with either 8192 hosts, 390 switches and 2144 connections or 27648 hosts, 864
switches and 6912 connections. The table shows that processing updates in bigger batches
is faster, as it was the case for the connection removals discussed in the prior section. Also
for bigger topologies more time is needed to adapt the network’s forward rules. The reason
is again that potentially more rules need to be changed because there are more switches
in the network that may use this connection on a shortest path to another switch. Figure
6.15 illustrates the maximum number of updates that can be processed per second by our
system. The plot lines are mostly consistent with our predictions. Bigger update batches
are represented in the graph by more connections updated at once and generally lead to

87



Chapter 6. Evaluation

a higher throughput of possible connection updates per second. Smaller topologies offer
a higher throughput, because fewer forward rules have to be adapted for each processed
update. This is the case for the reasons outlined above.

Figure 6.15: Failures per second

10 100

40

60

80

100

120

Connections updated at once

U
pd

at
es

/
Se

co
nd

Fat-Tree, 8192 Hosts
Fat-Tree, 27648 Hosts
Jellyfish, 8192 Hosts
Jellyfish, 27648 Hosts

The last plots shown in Figure 6.16 compare the number of used policies with the time
it took to process the weight updates. It shows that with ordinary numbers of policies
below 100k the processing times are nearly the same for any number of policies. For Fat-
Tree topologies sometimes even setups with higher policy counts process changes faster
than ones with lower counts. Only when increasing the number of policies to very high
magnitudes, the runtime is consistently higher than for smaller policies. For Jellyfish
topologies the processing time of updates is linearly increasing with more used policies.
We explain this differing between the topologies with the fact that it does not make a

88



6.5. Topology Updates

difference for Jellyfish topologies which connections are changed, because it is a random
topology. For Fat-Tree topologies on the other hand changing a connection higher up
in the hierarchy potentially changes many more forward rules compared to changing a
connection lower in the hierarchy.

Figure 6.16: Runtime upon changing the weight of x‰ Connections by 60% in a Fat-Tree
or Jellyfish topology with 8192 hosts.

(a) Fat-Tree topology

2 4 6 8 10
0.5

1

1.5

2

‰ Connections updated

T
im

e
in

Se
co

nd
s

10k Policies
50k Policies
100k Policies
250k Policies
500k Policies

(b) Jellyfish topology

2 4 6 8 10
0

0.2

0.4

‰ Connections changed

T
im

e
in

Se
co

nd
s

10k Policies
50k Policies
100k Policies
250k Policies
500k Policies

6.5.3 Switch Failures

Finally we evaluate how fast our controller can recover from switch failures. To model
such events we removed all connections the failing switch is part of. Thus we expected
the runtimes for recovering from a switch failure to be comparable with the removal of
the equal number of connections. We made our experiments for a topology size of 8192
hosts. The Fat-Tree topology contains 1280 switches and 16384 connections. The Jellyfish
topology needs only 390 switches and 2144 connections to support the same number of
hosts.

89



Chapter 6. Evaluation

Figure 6.17: Runtime to process switch outages in Fat-Tree and Jellyfish topologies with
8192 hosts.

2 4 6 8 10

0

2

4

6

8

10

12

14

16

‰ Switches removed

T
im

e
in

Se
co

nd
s

Fat-Tree, 8192 Hosts, 1280 Switches
Jellyfish, 8192 Hosts, 390 Switches

The plot in Figure 6.17 proves our claims. Runtimes behave exactly like we observed them
for removal of connections, only on a bigger scale as many more connections are removed.
Therefore we do not further investigate and refer to Section 6.5.1 where we discussed the
processing of connection removals.

90



7
Conclusions

7.1 Summary

In this master thesis we investigated how a SDN controller can be built by using a dataflow
computation. The advent of SDN allows to centrally evaluate the best paths to deploy in
the network and obtain feedback on the current load in real time. Other SDN controller
platforms that have been developed in the past use conventional programming paradigmas
to leverage this potential. We think the use of a dataflow computation is a better fit for
this problem because it scales to big input sizes and is able to react fast to incremental
changes of the input. To prove this we implemented a prototype controller platform in
the Rust programming language and evaluates its performance.

The main contributions of this master thesis are threefold. First we implemented a rout-
ing module offering competitive performance. Second we created the basis for a more
formalized topology model. Third we construct the initial layout of a policy language for
programmable networks. Below we discuss these in more detail.

We introduced a model for topologies and policies to define the input for our controller. A
topology consists of a list of hosts, switches and connections. Connections have a weight
that represents the cost to traverse it. Defining weights allows us to offer input such as
link utilization, cost or propagation delay to be captured by our model. To allow the input
of a topology and policies from external files, we also created a syntax for both.

91



Chapter 7. Conclusions

We described and evaluated our prototype of an SDN controller implemented as a differen-
tial dataflow. It builds on top of the two libraries differential-dataflow and timely-dataflow
written in the Rust programming language. As an approximation of the ideal paths in the
network, we calculate the shortest paths regarding the given connection weights.

We also provide a thorough evaluation showing the effectiveness of our approach. To
efficiently evaluate our work we also created an extensive testing framework. It includes
generators for Fat-Tree as well as Jellyfish topologies and for policies of arbitrary size. We
used them to show how the runtime of our controller behaves when increasing input sizes.
Fat-Tree represents a widely used hierarchical network topology. Jellyfish is a randomly
generated topology with very short average path-lengths that is very efficient in terms
of hardware requirements. The evaluation shows that our system’s two biggest strengths
are its ability to scale and to process incremental changes of the network very fast. It
can compute the forwarding rules for networks with 100k policies and a Fat-Tree topology
containing 8192 hosts in under 12 seconds and for Jellyfish topologies of the same size in
just over 2.5 seconds. When changing the weights of connections in the graph our system
needs on average 15ms per changed connection to adapt the forward rules.

7.2 Directions for Future Work

In this section we describe what could be done as extension of the work we have done.
During the development of our prototype and the writing of this thesis we had many ideas
for improvements which are interesting to follow up.

Extend Policy Syntax The syntax for policies we introduce in this thesis is kept very
simple and concise. In the future it could be replaced by a more extensive one. Extensions
could allow more complex constraints, e.g. ones that allow the exclusion of certain nodes
or paths.

Improve the Topology Model and Syntax The syntax for topologies we defined is
also relatively simple. It could be changed to use a standardized input format like RDF1.
This would additionally allow to easily add more fields describing the network nodes, e.g.
to assign names or attach the nodes’ hardware specifications. Also the internal topology

1RDF https://www.w3.org/RDF/

92

https://www.w3.org/RDF/


7.2. Directions for Future Work

data type could be extended to support queries on its internals. One could for example
want to obtain the list of hosts that are connected to the switch with node-id X.

Allow Real-Time Data Input At the moment we only run our computation until it
is done and then terminate it. To use our controller in the real world, it would need to
keep running and adapt itself to changes of the input. For this it should listen to an input
stream where topology or policy changes can be announced. This would also allow to test
our controller’s ability to react to updates and incorporate feedback into its computations.
For this the connection weights within the controller should be updated such that they
penalize connections with a high traffic load. As an effect our algorithm would favor
connections with free capacity and re-route parts of the packets through those to achieve
an evenly distributed network load.

Deploy Forward Rules Our prototype controller calculates forward rules for the un-
derlying network topology and the given policies. To test those forward rules they could
be deployed on either an emulated or even a real network. This would require to trans-
form the rules from the internal format into OpenFlow or P42. One could then conduct
experiments with varying loads of the network.

Parallelize all Code Our final suggestion for improvement is to parallelize the two
code modules that can only be run single-threaded at the moment. This concerns the
topology and policy parsers and the function translating the policies to tuples the dataflow
computation can process. All of this code can easily be parallelized by launching several
threads processing independent chunks of the input data at the same time. We did not do
this yet because it is a small part of the computation time only. Though if in the future
topology or policy sizes get bigger, this change could pay off.

2P4 http://p4.org/

93

http://p4.org/




A
Detailed Measurements

95



Appendix A. Detailed Measurements

Table A.1: Average runtime and maximum deviation over five runs for different network
sizes split up by computation steps. Number of worker-threads is fixed to 32, number of
policies is fixed to 100k and policy length is fixed to 4.

H
os

ts

Sw
it

ch
es Time in Seconds

policy
fwdrules parse convert fwdrules

Fa
t-

Tr
ee

16 20 0.021 ± 0.022 0.605 ± 0.05 0.584 ± 0.189 0.112 ± 0.044
128 80 0.077 ± 0.07 0.622 ± 0.043 0.548 ± 0.08 0.458 ± 0.405
432 180 0.124 ± 0.006 0.624 ± 0.063 0.608 ± 0.355 0.412 ± 0.11

1024 320 0.287 ± 0.005 0.617 ± 0.017 0.535 ± 0.061 0.42 ± 0.042
2000 500 0.857 ± 0.004 0.647 ± 0.044 0.617 ± 0.365 0.447 ± 0.035
3456 720 2.22 ± 0.051 0.661 ± 0.045 0.655 ± 0.454 0.467 ± 0.027
8192 1280 10.949 ± 0.315 0.705 ± 0.067 0.559 ± 0.01 0.494 ± 0.008

11664 1620 19.935 ± 0.406 0.714 ± 0.058 0.565 ± 0.019 0.496 ± 0.012
18522 2205 43.722 ± 1.311 0.704 ± 0.046 0.583 ± 0.01 0.494 ± 0.02
27648 2880 84.114 ± 1.568 0.723 ± 0.05 0.593 ± 0.005 0.457 ± 0.011
93312 6480 654.054 ± 13.916 0.763 ± 0.051 0.558 ± 0.031 0.528 ± 0.035

Je
lly

fis
h

m
at

ch
Fa

t-
Tr

ee
’s

#
H

os
ts

43 16 0.008 ± 0.001 0.622 ± 0.069 0.627 ± 0.323 0.067 ± 0.007
139 26 0.022 ± 0.001 0.613 ± 0.044 0.607 ± 0.216 0.273 ± 0.013
432 54 0.045 ± 0.002 0.613 ± 0.03 0.849 ± 0.316 0.32 ± 0.016

1099 103 0.071 ± 0.004 0.631 ± 0.042 0.526 ± 0.01 0.336 ± 0.005
2054 154 0.106 ± 0.003 0.639 ± 0.04 0.664 ± 0.463 0.36 ± 0.017
3456 216 0.155 ± 0.003 0.65 ± 0.051 0.653 ± 0.432 0.365 ± 0.014
8320 390 0.466 ± 0.01 0.665 ± 0.045 0.877 ± 0.337 0.384 ± 0.007

11664 486 0.864 ± 0.018 0.674 ± 0.048 0.768 ± 0.337 0.394 ± 0.009
18536 662 2.192 ± 0.057 0.676 ± 0.064 0.655 ± 0.463 0.434 ± 0.015
27648 864 4.536 ± 0.091 0.698 ± 0.047 0.564 ± 0.027 0.442 ± 0.014
93312 1944 36.109 ± 1.484 0.763 ± 0.082 0.629 ± 0.005 0.461 ± 0.023

Je
lly

fis
h

m
at

ch
Fa

t-
Tr

ee
’s

#
Sw

itc
he

s

54 20 0.008 ± 0.003 0.601 ± 0.019 0.562 ± 0.035 0.062 ± 0.002
427 80 0.061 ± 0.004 0.62 ± 0.048 0.65 ± 0.436 0.414 ± 0.01

1440 180 0.096 ± 0.003 0.663 ± 0.044 0.586 ± 0.159 0.379 ± 0.017
3414 320 0.19 ± 0.005 0.646 ± 0.061 0.633 ± 0.287 0.391 ± 0.006
6667 500 0.493 ± 0.031 0.656 ± 0.016 0.535 ± 0.004 0.41 ± 0.013

11520 720 1.339 ± 0.071 0.67 ± 0.03 0.752 ± 0.352 0.447 ± 0.009
27307 1280 7.19 ± 0.193 0.71 ± 0.035 0.571 ± 0.004 0.481 ± 0.007
38880 1620 13.39 ± 0.284 0.727 ± 0.042 0.579 ± 0.015 0.475 ± 0.012
61740 2205 29.239 ± 0.589 0.741 ± 0.064 0.611 ± 0.037 0.447 ± 0.018
92160 2880 57.805 ± 1.897 0.755 ± 0.047 0.619 ± 0.058 0.463 ± 0.026

311040 6480 453.158 ± 7.129 0.781 ± 0.048 0.639 ± 0.026 0.492 ± 0.007

96



Table A.2: Average runtime and maximum deviation over five runs for different numbers
of worker counts split up by computation steps. Number of worker-threads is fixed to 32,
number of policies is fixed to 100k and policy length is fixed to 4.

T
hr

ea
ds Time in Seconds

policy
fwdrules parse convert fwdrules

Fa
t-

Tr
ee

81
92

H
os

ts
,1

28
0

Sw
. 1 85.72 ± 0.394 0.703 ± 0.084 0.484 ± 0.002 5.296 ± 0.01

2 47.452 ± 1.382 0.72 ± 0.065 0.482 ± 0.01 2.897 ± 0.007
4 28.329 ± 0.263 0.676 ± 0.044 0.49 ± 0.005 1.554 ± 0.007
8 18.708 ± 0.592 0.685 ± 0.038 0.491 ± 0.01 0.883 ± 0.028
16 14.833 ± 0.959 0.669 ± 0.051 0.511 ± 0.009 0.609 ± 0.068
32 11.401 ± 0.073 0.682 ± 0.066 0.549 ± 0.016 0.531 ± 0.057
64 9.036 ± 0.272 0.653 ± 0.045 1.151 ± 0.01 0.598 ± 0.238

Je
lly

fis
h

81
90

H
os

ts
,3

90
Sw

. 1 5.207 ± 0.041 0.702 ± 0.101 0.507 ± 0.008 3.278 ± 0.015
2 2.924 ± 0.056 0.725 ± 0.056 0.508 ± 0.007 1.789 ± 0.006
4 1.599 ± 0.041 0.671 ± 0.006 0.489 ± 0.003 0.993 ± 0.003
8 0.991 ± 0.037 0.675 ± 0.019 0.491 ± 0.005 0.56 ± 0.008
16 0.7 ± 0.063 0.657 ± 0.054 0.727 ± 0.335 0.439 ± 0.038
32 0.501 ± 0.005 0.643 ± 0.034 0.754 ± 0.342 0.404 ± 0.013
64 0.627 ± 0.09 0.648 ± 0.045 1.11 ± 0.061 0.422 ± 0.007

Fa
t-

Tr
ee

27
64

8
H

os
ts

,2
88

0
Sw

. 1 648.531 ± 12.301 0.778 ± 0.07 0.57 ± 0.01 6.464 ± 0.071
2 362.075 ± 3.63 0.776 ± 0.066 0.556 ± 0.039 3.46 ± 0.026
4 215.786 ± 2.292 0.749 ± 0.059 0.476 ± 0.009 1.818 ± 0.006
8 143.187 ± 3.037 0.737 ± 0.043 0.481 ± 0.031 0.974 ± 0.135
16 114.343 ± 3.163 0.727 ± 0.05 0.598 ± 0.413 0.678 ± 0.112
32 88.044 ± 0.766 0.713 ± 0.052 0.591 ± 0.009 0.474 ± 0.002
64 72.447 ± 0.902 0.712 ± 0.056 1.213 ± 0.173 0.546 ± 0.021

Je
lly

fis
h

27
64

8
H

os
ts

,6
91

2
Sw

. 1 37.499 ± 0.116 0.742 ± 0.093 0.528 ± 0.007 4.304 ± 0.019
2 21.403 ± 0.169 0.76 ± 0.056 0.537 ± 0.011 2.435 ± 0.004
4 12.716 ± 0.082 0.74 ± 0.045 0.501 ± 0.009 1.316 ± 0.011
8 8.471 ± 0.107 0.708 ± 0.023 0.507 ± 0.009 0.715 ± 0.007
16 6.634 ± 0.303 0.699 ± 0.037 0.636 ± 0.465 0.522 ± 0.039
32 4.7 ± 0.157 0.725 ± 0.074 0.568 ± 0.009 0.466 ± 0.013
64 3.323 ± 0.169 0.678 ± 0.032 1.147 ± 0.004 0.485 ± 0.013

97



Appendix A. Detailed Measurements

Table A.3: Average runtime and maximum deviation over five runs for different numbers
of used policies and worker counts split up by computation steps. Policy length is fixed
to 10.

T
hr

ea
ds

P
ol

ic
ie

s Time in Seconds
policy

fwdrules parse convert fwdrules

Fa
t-

Tr
ee

81
92

H
.,

12
80

Sw
.

1
10k 84.744 ± 0.61 0.111 ± 0.03 0.056 ± 0.001 0.591 ± 0.004
50k 85.000 ± 1.063 0.389 ± 0.069 0.248 ± 0.001 2.757 ± 0.026
100k 83.528 ± 1.081 0.746 ± 0.102 0.481 ± 0.008 5.281 ± 0.023

32
10k 11.641 ± 0.389 0.079 ± 0.037 0.051 ± 0.004 0.141 ± 0.142
50k 11.642 ± 0.237 0.36 ± 0.057 0.29 ± 0.005 0.311 ± 0.01
100k 11.496 ± 0.236 0.703 ± 0.068 0.562 ± 0.004 0.527 ± 0.013

Je
lly

fis
h

81
92

H
.,

39
0

Sw
.

1
10k 5.37 ± 0.099 0.105 ± 0.036 0.050 ± 0.000 0.37 ± 0.002
50k 5.363 ± 0.07 0.383 ± 0.058 0.245 ± 0.003 1.707 ± 0.011
100k 5.393 ± 0.033 0.716 ± 0.086 0.491 ± 0.002 3.324 ± 0.018

32
10k 0.514 ± 0.025 0.065 ± 0.005 0.08 ± 0.027 0.093 ± 0.002
50k 0.505 ± 0.015 0.344 ± 0.057 0.302 ± 0.039 0.246 ± 0.004
100k 0.504 ± 0.009 0.674 ± 0.074 0.602 ± 0.189 0.415 ± 0.02

Fa
t-

Tr
ee

27
64

8
H

.,
28

80
Sw

.

1
10k 644.585 ± 7.89 0.108 ± 0.042 0.064 ± 0.001 0.678 ± 0.003
50k 642.833 ± 3.712 0.424 ± 0.079 0.292 ± 0.002 3.221 ± 0.035
100k 652.396 ± 9.626 0.816 ± 0.066 0.57 ± 0.006 6.404 ± 0.039

32
10k 88.747 ± 1.649 0.087 ± 0.027 0.066 ± 0.003 0.076 ± 0.003
50k 88.828 ± 1.69 0.406 ± 0.065 0.257 ± 0.01 0.244 ± 0.01
100k 89.24 ± 1.355 0.771 ± 0.097 0.589 ± 0.022 0.478 ± 0.032

Je
lly

fis
h

27
64

8
H

.,
86

4
Sw

.

1
10k 37.702 ± 0.335 0.11 ± 0.044 0.052 ± 0.001 0.484 ± 0.002
50k 37.875 ± 0.269 0.402 ± 0.068 0.254 ± 0.001 2.285 ± 0.008
100k 38.005 ± 0.327 0.754 ± 0.096 0.505 ± 0.003 4.312 ± 0.006

32
10k 4.644 ± 0.206 0.079 ± 0.034 0.064 ± 0.003 0.1 ± 0.002
50k 4.647 ± 0.104 0.346 ± 0.016 0.296 ± 0.026 0.276 ± 0.006
100k 4.703 ± 0.108 0.703 ± 0.042 0.653 ± 0.37 0.476 ± 0.01

98



Table A.4: Average runtime and maximum deviation over five runs for policies with dif-
ferent constraint lengths and worker counts split up by computation steps. Number of
policies is fixed to 100k.

T
hr

ea
ds

P
ol

.-L
en

. Time in Seconds
policy

fwdrules parse convert fwdrules

Fa
t-

Tr
ee

81
92

H
.,

12
80

Sw
.

1
2 83.758 ± 0.727 0.442 ± 0.074 0.222 ± 0.003 3.406 ± 0.014
4 83.658 ± 0.739 0.727 ± 0.097 0.461 ± 0.011 5.294 ± 0.014
10 83.158 ± 0.429 1.602 ± 0.165 1.291 ± 0.017 10.552 ± 0.07

32
2 11.553 ± 0.104 0.416 ± 0.061 0.277 ± 0.004 0.352 ± 0.01
4 11.462 ± 0.253 0.705 ± 0.071 0.674 ± 0.438 0.528 ± 0.011
10 11.558 ± 0.31 1.522 ± 0.105 1.788 ± 1.102 1.063 ± 0.033

Je
lly

fis
h

81
92

H
.,

39
0

Sw
.

1
2 5.37 ± 0.057 0.436 ± 0.083 0.241 ± 0.004 2.09 ± 0.013
4 5.387 ± 0.028 0.724 ± 0.105 0.509 ± 0.002 3.322 ± 0.014
10 5.286 ± 0.064 1.555 ± 0.155 1.409 ± 0.006 7.177 ± 0.045

32
2 0.498 ± 0.01 0.381 ± 0.032 0.283 ± 0.103 0.289 ± 0.012
4 0.502 ± 0.012 0.693 ± 0.074 0.566 ± 0.084 0.415 ± 0.009
10 0.518 ± 0.009 1.485 ± 0.102 1.501 ± 0.038 0.783 ± 0.017

Fa
t-

Tr
ee

27
64

8
H

.,
28

80
Sw

.

1
2 647.169 ± 9.082 0.477 ± 0.084 0.262 ± 0.004 4.025 ± 0.017
4 647.825 ± 4.651 0.786 ± 0.101 0.54 ± 0.006 6.425 ± 0.037
10 645.833 ± 4.852 1.703 ± 0.055 1.361 ± 0.047 13.271 ± 0.089

32
2 89.06 ± 1.437 0.449 ± 0.049 0.249 ± 0.006 0.297 ± 0.023
4 88.548 ± 0.463 0.745 ± 0.061 0.603 ± 0.012 0.47 ± 0.011
10 89.222 ± 0.811 1.569 ± 0.102 1.531 ± 0.108 1.045 ± 0.024

Je
lly

fis
h

27
64

8
H

.,
86

4
Sw

.

1
2 37.801 ± 0.286 0.472 ± 0.079 0.25 ± 0.003 2.829 ± 0.009
4 37.827 ± 0.186 0.766 ± 0.11 0.532 ± 0.008 4.297 ± 0.01
10 37.442 ± 0.355 1.618 ± 0.14 1.43 ± 0.022 8.676 ± 0.085

32
2 4.7 ± 0.109 0.438 ± 0.065 0.282 ± 0.004 0.321 ± 0.005
4 4.685 ± 0.089 0.745 ± 0.088 0.675 ± 0.439 0.471 ± 0.009
10 4.72 ± 0.153 1.503 ± 0.067 1.794 ± 1.112 0.919 ± 0.026

99



Appendix A. Detailed Measurements

Table A.5: Average runtime and maximum deviation over five runs for batch-removals
of connections from the topology. Number of worker-threads is fixed to 32, number of
policies is fixed to 100k and policy length is fixed to 4.

Time in Seconds
‰ Conn.
removed

Fat-Tree
8192 H., 1280 Sw.

Jellyfish
8192 H., 390 Sw.

Fat-Tree
27648 H., 2880 Sw.

Jellyfish
27648 H., 864 Sw.

2 0.500 ± 0.044 0.082 ± 0.003 4.000 ± 0.430 0.301 ± 0.034
4 0.751 ± 0.062 0.093 ± 0.002 6.326 ± 0.832 0.495 ± 0.078
6 1.146 ± 0.113 0.108 ± 0.006 7.941 ± 0.529 0.753 ± 0.084
8 1.303 ± 0.114 0.169 ± 0.004 10.053 ± 0.798 0.906 ± 0.138

10 1.677 ± 0.085 0.177 ± 0.014 12.415 ± 2.261 1.080 ± 0.101

Table A.6: Average runtime and maximum deviation over five runs for batch-changes of
connections in the topology. Number of worker-threads is fixed to 32, number of policies
is fixed to 100k and policy length is fixed to 4.

Time in Seconds
Weight
Change

Conn.
changed

Fat-Tree
8192 H., 1280 Sw.

Jellyfish
8192 H., 390 Sw.

Fat-Tree
27648 H., 2880 Sw.

Jellyfish
27648 H., 864 Sw.

20 %

2‰ 0.498 ± 0.028 0.037 ± 0.002 2.435 ± 0.309 0.324 ± 0.065
4‰ 0.694 ± 0.068 0.047 ± 0.001 3.960 ± 0.445 0.417 ± 0.022
6‰ 0.948 ± 0.040 0.168 ± 0.011 4.971 ± 0.495 0.602 ± 0.050
8‰ 1.247 ± 0.100 0.200 ± 0.008 5.815 ± 0.792 0.818 ± 0.067

10‰ 1.308 ± 0.095 0.212 ± 0.010 8.090 ± 0.693 1.051 ± 0.058

60 %

2‰ 0.523 ± 0.039 0.038 ± 0.002 2.724 ± 0.216 0.362 ± 0.054
4‰ 0.745 ± 0.128 0.071 ± 0.004 5.127 ± 0.306 0.456 ± 0.017
6‰ 1.094 ± 0.043 0.187 ± 0.009 7.157 ± 0.562 0.711 ± 0.063
8‰ 1.443 ± 0.077 0.216 ± 0.011 8.650 ± 0.473 0.953 ± 0.110

10‰ 1.617 ± 0.089 0.226 ± 0.012 11.319 ± 1.463 1.092 ± 0.036

100



Table A.7: Average runtime and maximum deviation over five runs for batch-changes of
connections in the topology with different number of policies. Weights are changed by 60
%, number of worker-threads is fixed to 32, topology size is fixed to 8192 hosts and policy
length is fixed to 4.

Time in Seconds

# Policies Conn.
changed

Fat-Tree
8192 H., 1280 Sw.

Jellyfish
8192 H., 390 Sw.

10k

2‰ 0.494 ± 0.028 0.032 ± 0.001
4‰ 0.733 ± 0.053 0.057 ± 0.006
6‰ 1.057 ± 0.109 0.117 ± 0.009
8‰ 1.328 ± 0.136 0.133 ± 0.006

10‰ 1.516 ± 0.154 0.144 ± 0.011

50k

2‰ 0.523 ± 0.069 0.035 ± 0.002
4‰ 0.711 ± 0.087 0.065 ± 0.002
6‰ 1.061 ± 0.072 0.155 ± 0.008
8‰ 1.472 ± 0.122 0.175 ± 0.012

10‰ 1.663 ± 0.132 0.189 ± 0.012

100k

2‰ 0.523 ± 0.039 0.038 ± 0.002
4‰ 0.745 ± 0.128 0.071 ± 0.004
6‰ 1.094 ± 0.043 0.187 ± 0.009
8‰ 1.443 ± 0.077 0.216 ± 0.011

10‰ 1.617 ± 0.089 0.226 ± 0.012

250k

2‰ 0.583 ± 0.099 0.041 ± 0.001
4‰ 0.785 ± 0.120 0.088 ± 0.004
6‰ 1.191 ± 0.133 0.291 ± 0.014
8‰ 1.508 ± 0.111 0.343 ± 0.019

10‰ 1.728 ± 0.123 0.348 ± 0.016

500k

2‰ 0.578 ± 0.106 0.050 ± 0.006
4‰ 0.784 ± 0.113 0.117 ± 0.007
6‰ 1.232 ± 0.198 0.424 ± 0.007
8‰ 1.653 ± 0.069 0.491 ± 0.007

10‰ 1.924 ± 0.182 0.496 ± 0.007

101



Appendix A. Detailed Measurements

Table A.8: Average runtime and maximum deviation over five runs for batch-removals of
switches in the topology. Number of worker-threads is fixed to 32, topology size is fixed
to 8192 hosts, policy length is fixed to 4 and number of policies is fixed to 100k.

Time in Seconds
Switches
removed

Fat-Tree
8192 H., 1280 Sw.

Jellyfish
8192 H., 390 Sw.

1‰ 2.102 ± 0.18 0.073 ± 0.004
2‰ 3.46 ± 0.248 0.239 ± 0.01
3‰ 5.178 ± 0.43 0.297 ± 0.005
4‰ 6.727 ± 0.584 0.35 ± 0.014
5‰ 8.63 ± 0.939 0.43 ± 0.007
6‰ 9.879 ± 0.722 0.436 ± 0.02
7‰ 11.073 ± 0.637 0.547 ± 0.019
8‰ 12.948 ± 0.908 0.595 ± 0.039
9‰ 13.982 ± 0.625 0.669 ± 0.022

10‰ 15.664 ± 0.589 0.697 ± 0.024

102



List of Tables

3.1 Overview of five different SDN-Controller platforms. . . . . . . . . . . . . . 14

5.1 All ConstraintTuples resulting from policy in Figure 5.3. . . . . . . . . . . . 53

5.2 Topology size in regard to k . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.1 Parameter range of the conducted measurements . . . . . . . . . . . . . . . 67

6.2 Runtime for different numbers of used threads split up by computation steps. 73

6.3 Total runtime for different numbers of policies. . . . . . . . . . . . . . . . . 75

6.4 Runtime for different numbers of policies split up by computation steps. . . 76

6.5 Runtime for policies with different lengths split up by computation steps. . 78

6.6 Runtime to process removals of connections in batches of size between 2‰ to
10‰ of all connections in the topologies. . . . . . . . . . . . . . . . . . . . 82

6.7 Runtime to process the removal of a single connection by batch-size. . . . . 82

6.8 Runtime to process weight update of connections. . . . . . . . . . . . . . . 85

6.9 Runtime to process the update of a single connection by batch-size. . . . . 87

A.1 Average runtime and maximum deviation over five runs for different network
sizes split up by computation steps. Number of worker-threads is fixed to
32, number of policies is fixed to 100k and policy length is fixed to 4. . . . 96

A.2 Average runtime and maximum deviation over five runs for different num-
bers of worker counts split up by computation steps. Number of worker-
threads is fixed to 32, number of policies is fixed to 100k and policy length
is fixed to 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

103



List of Tables

A.3 Average runtime and maximum deviation over five runs for different num-
bers of used policies and worker counts split up by computation steps. Pol-
icy length is fixed to 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

A.4 Average runtime and maximum deviation over five runs for policies with dif-
ferent constraint lengths and worker counts split up by computation steps.
Number of policies is fixed to 100k. . . . . . . . . . . . . . . . . . . . . . . 99

A.5 Average runtime and maximum deviation over five runs for batch-removals
of connections from the topology. Number of worker-threads is fixed to 32,
number of policies is fixed to 100k and policy length is fixed to 4. . . . . . 100

A.6 Average runtime and maximum deviation over five runs for batch-changes
of connections in the topology. Number of worker-threads is fixed to 32,
number of policies is fixed to 100k and policy length is fixed to 4. . . . . . 100

A.7 Average runtime and maximum deviation over five runs for batch-changes
of connections in the topology with different number of policies. Weights
are changed by 60 %, number of worker-threads is fixed to 32, topology size
is fixed to 8192 hosts and policy length is fixed to 4. . . . . . . . . . . . . . 101

A.8 Average runtime and maximum deviation over five runs for batch-removals
of switches in the topology. Number of worker-threads is fixed to 32, topol-
ogy size is fixed to 8192 hosts, policy length is fixed to 4 and number of
policies is fixed to 100k. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

104



List of Figures

2.1 Timely dataflow graph example. Contains an input and an output node
and a loop with a feedback edge. Source: [MMI+13, Figure 3] . . . . . . . 8

4.1 Example topology created from input file in Listing 4.1 . . . . . . . . . . . 19

4.2 Abstract Syntax Tree for Policy 1 from Listing 4.2 . . . . . . . . . . . . . . 21

5.1 Overview Figure of all modules that are part of the code-root library with
their code location. The root module is the library and colored green. It
has three sub modules: model, parser and computation colored gray. Those
themselves have submodules colored blue. . . . . . . . . . . . . . . . . . . 25

5.2 Overview Figure of all modules that are part of the code-root main with
their code location. The root module is the main and colored green. It has
one submodule colored gray which itself has two submodules colored blue. 26

5.3 Abstract Syntax Tree for Host_A : Switch_A . (Switch_B | Switch_C) : Host_B 53

5.4 Example topology used for policy in 5.3 . . . . . . . . . . . . . . . . . . . . 53

6.1 Example 4-ary Fat-Tree Topology: 16 hosts and 20 4-port switches. Shows
routing from one pod to another. Source: [AFLV08, Figure 3] . . . . . . . 67

6.2 Example Jellyfish topology with 16 hosts and 20 4-port switches. Shows
the path length from one host to the others. Source: [SHPG12, Figure 1b] . 68

6.3 Compare runtime by number of supported hosts. . . . . . . . . . . . . . . . 69

6.4 Compare runtime for same number of switches in both topologies. . . . . . 70

6.5 Different numbers of used threads; topologies with 8192 hosts. . . . . . . . 71

105



List of Figures

6.6 Different numbers of used threads; topologies with 27648 hosts. . . . . . . 72

6.7 Runtime for different numbers of used threads split up by computation
steps for Fat-Tree topologies with 8192 hosts. Does not contain shortest
path computation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.8 Runtime for different numbers of policies split up by computation steps for
Fat-Tree topologies with 27648 hosts. Does not contain time for forward
rule computation of shortest paths. . . . . . . . . . . . . . . . . . . . . . . 77

6.9 Runtime for different lengths of policies split up by computation steps for
Fat-Tree topologies with 27648 hosts. Does not contain time for forward
rule computation of shortest paths. . . . . . . . . . . . . . . . . . . . . . . 79

6.10 Runtime for different lengths of policies split up by computation steps for
Fat-Tree topologies with 27648 hosts. Does not contain time for forward
rule computation of shortest paths. . . . . . . . . . . . . . . . . . . . . . . 80

6.11 Runtime to process connection outages in Fat-Tree and Jellyfish topologies
with 8192 or 27648 hosts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.12 Compare runtime for absolute numbers of failures. . . . . . . . . . . . . . . 84

6.13 Runtime to process weight updates. . . . . . . . . . . . . . . . . . . . . . . 86

6.14 Compare runtime for absolute numbers of updates in topologies. . . . . . . 86

6.15 Failures per second . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.16 Runtime upon changing the weight of x‰ Connections by 60% in a Fat-Tree
or Jellyfish topology with 8192 hosts. . . . . . . . . . . . . . . . . . . . . . 89

6.17 Runtime to process switch outages in Fat-Tree and Jellyfish topologies with
8192 hosts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

106



List of Listings

4.1 Example topology input file . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Example policy input file . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1 Declaration of Rust’s enumeration Result defined in std::result. . . . . . . 33

5.2 Declaration of the enumeration Token. . . . . . . . . . . . . . . . . . . . . . 34

5.3 Public interface of module topo_parser. . . . . . . . . . . . . . . . . . . . . 36

5.4 Public interface of module policy_parser. . . . . . . . . . . . . . . . . . . . 38

5.5 Terminal command to run differential-sdn on 8 cores and output the result. 55

5.6 Terminal command to benchmark differential-sdn on 4 cores with a fat tree
topology, k=8 and 100 policies. . . . . . . . . . . . . . . . . . . . . . . . . 55

5.7 Command-Line Interface Description: Usage and Options. . . . . . . . . . 56

5.8 Terminal command to benchmark differential-sdn with a jellyfish topology
and 100 policies with verbose output and printing results when done. . . . 59

5.9 Terminal command to benchmark differential-sdn through 5 runs on the
parameters provided in the file benchmark.in. . . . . . . . . . . . . . . . . . 60

5.10 Example benchmark parameter input file. . . . . . . . . . . . . . . . . . . 61

5.11 Example benchmark output part 1. . . . . . . . . . . . . . . . . . . . . . . 63

5.12 Example benchmark output part 2. . . . . . . . . . . . . . . . . . . . . . . 63

107





Bibliography

[AFLV08] M. Al-Fares, A. Loukissas, and A. Vahdat. “A scalable, commodity data
center network architecture.” ACM SIGCOMM Computer Communication
Review, vol. 38, no. 4, 63–74, 2008.

[Apa] S. F. Apache. “Apache License, Version 2.0.” http://www.apache.org/
licenses/LICENSE-2.0.

[Bla15] J. Blandi. Why Rust? O’Reilly, 2015.

[CLMR16] Z. Chothia, J. Liagouris, F. McSherry, and T. Roscoe. “Explaining Outputs
in Modern Data Analytics.” Tech. rep., ETH-Zürich, 2016.

[FHF+11] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford, A. Story,
and D. Walker. “Frenetic: A network programming language.” In ACM
Sigplan Notices, vol. 46, pp. 279–291. ACM, 2011.

[KREV+15] D. Kreutz, F. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg, S. Azodol-
molky, and S. Uhlig. “Software-Defined Networking: A Comprehensive Sur-
vey.” Proceedings of the IEEE, vol. 103, no. 1, 14–76, 2015.

[KZMB14] R. Khondoker, A. Zaalouk, R. Marx, and K. Bayarou. “Feature-based com-
parison and selection of Software Defined Networking (SDN) controllers.”
In Computer Applications and Information Systems (WCCAIS), 2014 World
Congress on, pp. 1–7. IEEE, 2014.

[McSa] F. McSherry. “Differential Dataflow.” https://github.com/
frankmcsherry/differential-dataflow.

109

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
https://github.com/frankmcsherry/differential-dataflow
https://github.com/frankmcsherry/differential-dataflow


Bibliography

[McSb] F. McSherry. “Timely Dataflow.” https://github.com/frankmcsherry/
timely-dataflow.

[MIT] MIT. “The MIT License (MIT).” https://opensource.org/licenses/MIT.

[MMI+13] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi.
“Naiad: A Timely Dataflow System.” In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles, pp. 439–455. ACM, 2013.

[MMII13] F. McSherry, D. G. Murray, R. Isaacs, and M. Isard. “Differential Dataflow.”
In Proceedings of the 6th Biennial Converence on Innovative Data Systems
Research. CIDR, 2013.

[RMF+13] J. Reich, C. Monsanto, N. Foster, J. Rexford, and D. Walker. “Modular sdn
programming with pyretic.” Technical Report of USENIX, 2013.

[RTa] Rust-Team. “The Rust Book.” https://doc.rust-lang.org/book/. [On-
line; accessed June 4, 2016].

[RTb] Rust-Team. “The Rust FAQ.” https://www.rust-lang.org/faq.html.
[Online; accessed June 4, 2016].

[SBM+14] R. Soulé, S. Basu, P. J. Marandi, F. Pedone, R. Kleinberg, E. G. Sirer,
and N. Foster. “Merlin: A language for provisioning network resources.”
In Proceedings of the 10th ACM International on Conference on emerging
Networking Experiments and Technologies, pp. 213–226. ACM, 2014.

[SHPG12] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey. “Jellyfish: Networking
data centers randomly.” In Presented as part of the 9th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 12), pp. 225–238.
2012.

[VTVR15] S. Vissicchio, O. Tilmans, L. Vanbever, and J. Rexford. “Central control over
distributed routing.” ACM SIGCOMM Computer Communication Review,
vol. 45, no. 4, 43–56, 2015.

110

https://github.com/frankmcsherry/timely-dataflow
https://github.com/frankmcsherry/timely-dataflow
https://opensource.org/licenses/MIT
https://doc.rust-lang.org/book/
https://www.rust-lang.org/faq.html


 
 
 

Declaration of originality 
 
The signed declaration of originality is a component of every semester paper, Bachelor’s thesis, 
Master’s thesis and any other degree paper undertaken during the course of studies, including the 
respective electronic versions. 
 

Lecturers may also require a declaration of originality for other written papers compiled for their 
courses. 

__________________________________________________________________________ 
 
I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it 
in my own words. Parts excepted are corrections of form and content by the supervisor. 
 

Title of work (in block letters): 

 

 
 

Authored by (in block letters): 

For papers written by groups the names of all authors are required. 

 
Name(s): First name(s): 

   

   

   

   

   

 
With my signature I confirm that 

− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information 
sheet. 

− I have documented all methods, data and processes truthfully. 

− I have not manipulated any data. 

− I have mentioned all persons who were significant facilitators of the work. 

 

I am aware that the work may be screened electronically for plagiarism. 
 
Place, date Signature(s) 

   

   

   

   

   

  
 For papers written by groups the names of all authors are 

required. Their signatures collectively guarantee the entire 
content of the written paper. 

Expressing the Routing Logic of a SDN Controller as a Differential Dataflow

Stücklberger Christian

Zurich, 15.7.2016




	Contents
	Introduction
	Motivation
	Problem Statement
	Contributions
	Structure of the Thesis

	Preliminaries
	The Rust Programming Language
	Dataflow Programming
	Timely Dataflow
	Differential Dataflow

	Software-Defined Networking (SDN)

	Related Work
	SDN Controllers
	Network Programming Languages

	Model
	Topology
	Policy

	Implementation
	System-Overview
	Model
	Topology
	Policy

	Parsers
	Lexer
	Topology Parser
	Policy Parser

	Computation
	Run
	Benchmark
	Dataflow
	Component
	Utility

	Execution
	Main
	Command-Line Interface

	Generate
	Topologies
	Policies
	Update Batches

	Measurement
	Run with Command Line Arguments
	Run with File Arguments
	Data Types


	Evaluation
	Experimental Setting
	Hardware
	Policies
	Topologies
	Fat-Tree Topology
	Jellyfish Topology


	Network Size Comparison
	Scaling with Number of Workers
	Influence of Policies
	Number of Policies
	Policy Length Comparison

	Topology Updates
	Connection Failures
	Connection Weight Updates
	Switch Failures


	Conclusions
	Summary
	Directions for Future Work

	Appendices
	Detailed Measurements
	Lists of Tables
	Lists of Figures
	Lists of Listings
	Bibliography


