Faucet: a user-level, modular technique for flow control in dataflow engines Andrea Lattuada Systems Group, ETH Zürich Frank McSherry Unaffiliated Zaheer Chothia Systems Group, ETH Zürich #### Problem RAM exhaustion due to buffered intermediate results #### **Our Solution** - no system-level general strategy - application-driven scheduling 10-100x memory savings for 15-25% runtime overhead #### Dataflow model # Source of the problem Rate imbalance Naiad $\begin{array}{c} 1 \\ 2 \\ 3 \\ Nin(t, t') \end{array}$ Nout(t, t') flat_map(|x| [1, ..., x]) # Existing approach #1 - Source backpressure backpressure signal source overloaded operators Storm Heron Spark streaming # Existing approach #2 - Edge-by-edge backpressure similar to TCP flow control Akka Streams Flink ### Our approach - Faucet based on Timely Dataflow's concepts - no fine-grained signal - track completion of a batch of tuples control scheduling to limit intermediate results Scopes nested operator structure Timestamps tuple metadata #### **Progress Tracking** tracks pending timestamps H. Q. Ngo, C. Ré, and A. Rudra - Generic Join input graph build result tuples by extending prefixes $$(a_{11})$$ $$(a_{11}, a_{22})$$ $$(a_{11}, a_{22})$$ (a_{11}, a_{22}, a_{32}) #### Evaluation - Dataset #### Enumerate triangles in the Livejournal Dataset 4'847'571 nodes 68'993'773 edges 285'730'264 triangles #### Hardware Intel Xeon E5-2650 @ 2.00GHz 16 physical cores 10Gbps link # Evaluation - Sensitivity to parameter choice Natches number of batches in-flight in parallel N_{batches} ≥ 2 mitigates stragglers #### Evaluation # Memory savings Runtime overhead 15-25% #### Faucet limits intermediate state RAM is increasingly the main cost of a system Memory savings 10-100x or more Overhead 15-25%