1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
// Copyright 2017 ETH Zurich. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Asynchronous remote procedure calls.
//!
//! This implements a small framework for receiving and sending requests and
//! responses between two connected peers.
//! During set-up, one of the peers acts as a *server*, listening on a server
//! socket to accept new incoming *clients*. Clients connect to a server
//! using the socket address.
//!
//! Once a connection between two peers is established, their initial role as
//! server and client becomes irrelevant, as they take on the role of either
//! being a *sender* or *receiver* (or both) of requests.
//!
//! # 1. Defining a custom protocol
//!
//! In order to use this framework, client code must first define the types
//! to be used for a request-response protocol. It is not using a custom
//! interface description language (IDL) but rather is based on implementing
//! certain Rust traits. Different types of requests must be distinguished
//! from each other through a value called the *name* (i.e. the name of the
//! remote procedure). Since the name is typically used for dispatching on the
//! receiver-side, it is recommended to use an `enum` for it.
//!
//! The name, argument and return types of a method are defined by implementing
//! the [`Request`](trait.Request.html) type. Each invocation can either return
//! successfully with the type specified in
//! [`Request::Success`](trait.Request.html#associatedtype.Success) or fail with
//! an application-specific error defined in
//! [`Request::Error`](trait.Request.html#associatedtype.Error).
//!
//! # 2. Connection set-up
//!
//! During connection set-up, one peer needs to act as a server. To instantiate
//! a server, invoke [`Network::server()`](struct.Network.html#method.server)
//! to obtain a handle for new incoming clients.
//!
//! The client is expected to call
//! [`Network::client()`](struct.Network.html#method.client) with the
//! corresponding socket address to connect to the server. Both peers will
//! obtain a pair of
//! ([`Incoming`](struct.Incoming.html), [`Outgoing`](struct.Outgoing.html))
//! queue handles. These are used to either *receive* incoming requests, or
//! *send* out outgoing requests.
//!
//! # 3. Handling requests \& responses
//!
//! Once connected, a peer might decide to send requests by invoking
//! [`Outgoing::request()`](struct.Outgoing.html#method.request) with an
//! argument implementing the [`Request`](trait.Request.html) trait. The
//! remote peer will receive this request on its
//! [`Incoming`](struct.Incoming.html) queue in the form of an encoded
//! [`RequestBuf`](struct.RequestBuf.html) object. To decode this object, it
//! is common to match on the method name returned by
//! [`RequestBuf::name()`](struct.RequestBuf.html#method.name) and then decode
//! the request payload using
//! [`RequestBuf::decode()`](struct.RequestBuf.html#method.decode). Decoding
//! a request successfully returns the decoded payload, as well as a
//! [`Responder`](struct.Responder.html) object which is used to send back the
//! response to the origin.
//!
//! Once the response arrives back at the original sender, the
//! [`Response`](struct.Response.html) future will resolve to the decoded
//! response.
//!
//! ## Examples:
//!
//! Please refer to `tests/calc.rs` for a complete example of how to use
//! this module.

use std::collections::HashMap;
use std::io::{self, ErrorKind};
use std::net::{TcpListener, TcpStream, Shutdown, ToSocketAddrs};
use std::marker::PhantomData;
use std::thread;
use std::sync::{Arc, Mutex};
use std::sync::atomic::{AtomicUsize, Ordering};

use futures::{Async, Poll};
use futures::future::Future;
use futures::stream::Stream;
use futures::sync::mpsc;
use futures::sync::oneshot;

use Network;
use transport;
use message::MessageBuf;

use serde::ser::Serialize;
use serde::de::DeserializeOwned;

/// A trait to distinguish remote procedure calls.
///
/// #Examples
/// ```
/// use strymon_communication::rpc::Name;
/// #[derive(Clone, Copy)]
/// #[repr(u8)]
/// pub enum MyRPC {
///    UselessCall = 1,
/// }
///
/// impl Name for MyRPC {
///     type Discriminant = u8;
///     fn discriminant(&self) -> Self::Discriminant {
///         *self as Self::Discriminant
///     }
///
///     fn from_discriminant(value: &Self::Discriminant) -> Option<Self> {
///         match *value {
///             1 => Some(MyRPC::UselessCall),
///             _ => None,
///         }
///     }
/// }
/// ```
pub trait Name: Send + Sized + 'static {

    /// The discriminant type representing `Self`.
    type Discriminant: Serialize + DeserializeOwned + 'static;

    /// Convert `Self` into a discriminant.
    fn discriminant(&self) -> Self::Discriminant;

    /// Restore `Self` from a discriminant. Returns `None` if `Self` cannot be restored.
    fn from_discriminant(&Self::Discriminant) -> Option<Self>;
}

/// A trait for defining the signature of a remote procedure.
///
/// Within this framework, a new request type can be defined by implementing
/// this trait. The type implementing `Request` stores the arguments sent to
/// the remote receiver and then has to respond with either `Ok(Request::Success)`
/// or `Err(Request::Error)`. In order for the receiver to be able to distinguish
/// the different incoming requests without fully decoding it, each request
/// type must define an associated constant `Request::NAME` for this purpose.
///
/// # Examples
/// ```rust,ignore
/// #[derive(Serialize, Deserialize, Clone, Debug)]
/// pub struct GetNamesForId {
///     pub arg: u32,
/// }
///
/// #[derive(Serialize, Deserialize, Clone, Debug)]
/// struct InvalidId;
///
/// // CustomRPC is an enum implementing the `Name` trait
/// impl Request<CustomRPC> for GetNamesForId {
///     // A unique identifier for this method
///     const NAME = CustomRPC::GetNamesForId;
///
///     // Return type of a successful response
///     type Success = Vec<String>;
///     // Return type of a failed invocation
///     type Error = InvalidId;
/// }
/// ```
pub trait Request<N: Name>: Serialize + DeserializeOwned {

    /// The type of a successful response.
    type Success: Serialize + DeserializeOwned;

    /// The type of a failed response.
    type Error: Serialize + DeserializeOwned;

    /// A unique value identifying this type of request.
    const NAME: N;
}

type RequestId = u32;

#[derive(Copy, Clone)]
#[repr(u8)]
enum Type {
    Request = 0,
    Response = 1,
}

impl Type {
    fn from_u8(num: u8) -> io::Result<Self> {
        match num {
            0 => Ok(Type::Request),
            1 => Ok(Type::Response),
            _ => Err(io::Error::new(ErrorKind::InvalidData, "invalid req/resp type")),
        }
    }
}

/// Receiver-side buffer containing an incoming request.
///
/// This type represents a request to be processed by a receiver. In order to
/// serve a request, the receiver code needs to identify the method by calling
/// [`name()`](#method.name), decode it using [`decode()`](#method.decode),
/// process it and respond using the obtained [`Responder`](struct.Responder.html).
///
/// # Examples:
/// Requests are received on the [`Incoming`](struct.Incoming.html) queue and
/// are then typically decoded using a `match` statement as follows:
///
/// ```rust,ignore
/// fn dispatch(&mut self, request: RequestBuf) -> io::Result<()> {
///     match request.name() {
///         &CustomRPC::Foo => {
///             let (args, responder) = request.decode::<Foo>()?;
///             let result = self.foo(args);
///             responder.respond(result);
///         },
///         &CustomRPC::Bar => {
///             // handle requests of type `Bar`…
///         },
///     };
///     Ok(())
/// }
/// ```
pub struct RequestBuf<N: Name> {
    id: RequestId,
    name: N,
    origin: transport::Sender,
    msg: MessageBuf,
    _n: PhantomData<N>,
}

impl<N: Name> RequestBuf<N> {
    /// Extracting the `Request::NAME` to identfy the request type.
    pub fn name(&self) -> &N {
        &self.name
    }
    /// Decodes the request into the request data and a responder handle.
    ///
    /// The returned [`Responder`](struct.Responder.html) handle is to be used
    /// to serve the decoded request `R`.
    pub fn decode<R: Request<N>>(mut self) -> io::Result<(R, Responder<N, R>)> {
        let payload = self.msg.pop::<R>()?;
        let responder = Responder {
            id: self.id,
            origin: self.origin,
            marker: PhantomData,
        };

        Ok((payload, responder))
    }
}

/// Receiver-side handle for responding to a given request.
///
/// Since the responder is bound to a given typed request, can only be
/// obtained through [`RequestBuf::decode()`](struct.RequestBuf.html#method.decode).
pub struct Responder<N: Name, R: Request<N>> {
    id: RequestId,
    origin: transport::Sender,
    marker: PhantomData<(N, R)>,
}

impl<N: Name, R: Request<N>> Responder<N, R> {
    /// Sends back the response to the client which submitted the request.
    pub fn respond(self, res: Result<R::Success, R::Error>) {
        let mut msg = MessageBuf::empty();
        msg.push(Type::Response as u8).unwrap();
        msg.push(self.id).unwrap();
        msg.push(res).unwrap();
        self.origin.send(msg)
    }
}

type Pending = oneshot::Sender<MessageBuf>;

/// Sender-side future eventually yielding the response for a request.
///
/// Upon successful completion, the future will yield `Ok(Request::Success)`.
/// Application-level errors occurring at the receiver-side yield a
/// `Err(Ok(Request::Error))` while networking errors will be returned as
/// `Err(Err(std::io::Error))`.
///
/// In order to obtain this type, one must first send out a request with
/// [`Outgoing::request()`](struct.Outgoing.html#method.request).
#[must_use = "futures do nothing unless polled"]
pub struct Response<N: Name, R: Request<N>> {
    rx: oneshot::Receiver<MessageBuf>,
    pending: Arc<Mutex<HashMap<RequestId, Pending>>>,
    id: RequestId,
    _request: PhantomData<(N, R)>,
}

impl<N: Name, R: Request<N>> Response<N, R> {
    /// Convenience-wrapper which performs a blocking wait on the response.
    ///
    /// # Panics
    /// This panics if a networking error occurs while waiting for the response.
    pub fn wait_unwrap(self) -> Result<R::Success, R::Error> {
        self.map_err(|e| e.expect("request failed with I/O error")).wait()
    }
}

impl<N: Name, R: Request<N>> Future for Response<N, R> {
    type Item = R::Success;
    type Error = Result<<R as Request<N>>::Error, io::Error>;

    fn poll(&mut self) -> Result<Async<Self::Item>, Self::Error> {
        match self.rx.poll() {
            Ok(Async::Ready(mut msg)) => {
                // decode the message
                match msg.pop::<Result<R::Success, R::Error>>() {
                    Ok(Ok(success)) => Ok(Async::Ready(success)),
                    Ok(Err(error)) => Err(Ok(error)),
                    Err(err) => Err(Err(io::Error::new(ErrorKind::Other, err))),
                }
            },
            Ok(Async::NotReady) => Ok(Async::NotReady),
            Err(_) => Err(Err(io::Error::new(ErrorKind::Other, "request canceled"))),
        }
    }
}

impl<N: Name, R: Request<N>> Drop for Response<N, R> {
    fn drop(&mut self) {
        // cancel pending response (if not yet completed)
        if let Ok(mut pending) = self.pending.lock() {
            pending.remove(&self.id);
        }
    }
}

/// Sender-side queue for sending out requests.
///
/// Requests can be sent to the remote peer using the
/// [`Outgoing::request()`](#method.request) method. As this method returns a
/// future for the response, a sender can send out many concurrent outgoing
/// requests without having to wait for responses first. This means that some
/// requests might return before others.
#[derive(Clone)]
pub struct Outgoing {
    next_id: Arc<AtomicUsize>,
    pending: Arc<Mutex<HashMap<RequestId, Pending>>>,
    sender: transport::Sender,
}

impl Outgoing {
    fn next_id(&self) -> RequestId {
        self.next_id.fetch_add(1, Ordering::SeqCst) as u32
    }

    /// Asynchronously sends out a request to the remote peer.
    ///
    /// Returns a future for the pending response. The next request can be
    /// submitted without having to wait for the previous response to arrive.
    pub fn request<N: Name, R: Request<N>>(&self, r: &R) -> Response<N, R> {
        let id = self.next_id();
        let (tx, rx) = oneshot::channel();

        // step 1: create request packet
        let mut msg = MessageBuf::empty();
        msg.push(Type::Request as u8).unwrap();
        msg.push(id).unwrap();
        msg.push(R::NAME.discriminant()).unwrap();
        msg.push::<&R>(r).unwrap();

        // step 2: add completion handle for pending responses
        {
            let mut pending = self.pending.lock().expect("request thread panicked");
            pending.insert(id, tx);
        }

        // step 3: send packet to network
        self.sender.send(msg);

        // step 4: prepare response decoder
        Response {
            rx: rx,
            pending: self.pending.clone(),
            id: id,
            _request: PhantomData,
        }
    }
}

/// Receiver-side queue of incoming requests.
///
/// This implements the `futures::stream::Stream` to yield encoded
/// [`RequestBuf`](struct.RequestBuf.html)s.
#[must_use = "futures do nothing unless polled"]
pub struct Incoming<N: Name> {
    rx: mpsc::UnboundedReceiver<Result<RequestBuf<N>, io::Error>>,
}

impl<N: Name> Stream for Incoming<N> {
    type Item = RequestBuf<N>;
    type Error = io::Error;

    fn poll(&mut self) -> Poll<Option<RequestBuf<N>>, io::Error> {
        transport::poll_receiver(&mut self.rx)
    }
}

struct Resolver<N: Name> {
    incoming: mpsc::UnboundedSender<Result<RequestBuf<N>, io::Error>>,
    pending: Arc<Mutex<HashMap<RequestId, Pending>>>,
    sender: transport::Sender,
    stream: TcpStream,
}

impl<N: Name> Resolver<N> {
    /// decodes a message received on the incoming socket queue.
    fn decode(&mut self, mut msg: MessageBuf) -> io::Result<()> {
        let ty = msg.pop().and_then(Type::from_u8)?;
        let id = msg.pop::<RequestId>()?;
        match ty {
            // if we got a new request, forward it on the queue for incoming
            // requests and create an opaque requestbuf so the receiver can
            // try to decode it
            Type::Request => {
                let name = msg.pop::<N::Discriminant>()?;
                let name = N::from_discriminant(&name)
                    .and_then(|n| Some(Ok(n)))
                    .unwrap_or_else(|| Err(io::Error::new(ErrorKind::Other, "decoding discriminant failed")))?;
                let buf = RequestBuf {
                    id: id,
                    name: name,
                    origin: self.sender.clone(),
                    msg: msg,
                    _n: PhantomData,
                };

                // try to send to receiver
                if self.incoming.unbounded_send(Ok(buf)).is_err() {
                    error!("incoming request queue dropped, ignoring request");
                }
            }
            // if it was a response, we should have a pending response
            // handler waiting - find it and complete the pending request
            Type::Response => {
                let mut pending = self.pending.lock().unwrap();
                let completed = pending
                    .remove(&id)
                    .and_then(move |tx| tx.send(msg).ok())
                    .is_some();

                if !completed {
                    info!("dropping canceled response for {:?}", id);
                }
            }
        }

        Ok(())
    }

    // starts a dispatcher for incoming message and decide if they are
    // incoming requests or responses
    // TODO(swicki): add a timeout which removes old pending responses
    fn dispatch(mut self) {
        thread::spawn(move || {
            loop {
                let res = match MessageBuf::read(&mut self.stream) {
                    // got a full message, try to decode it
                    Ok(Some(message)) => self.decode(message),
                    // remote end closed connection, shut down this thread
                    Ok(None) => break,
                    // error while receiving, signal this to "incoming" queue
                    Err(err) => Err(err),
                };

                // make sure to announce any network errors to client
                if let Err(err) = res {
                    let _ = self.incoming.unbounded_send(Err(err));
                    break;
                }
            }

            drop(self.stream.shutdown(Shutdown::Both));
        });
    }
}

/// Handle for queue of newly connected peers.
#[must_use = "futures do nothing unless polled"]
pub struct Server<N: Name> {
    external: Arc<String>,
    port: u16,
    rx: mpsc::Receiver<io::Result<(Outgoing, Incoming<N>)>>,
}

impl<N: Name> Server<N> {
    // TODO(swicki) could this be merged with network::Listener?
    fn new(network: Network, port: u16) -> io::Result<Self> {
        let sockaddr = ("0.0.0.0", port);
        let listener = TcpListener::bind(&sockaddr)?;
        let external = network.hostname.clone();
        let port = listener.local_addr()?.port();
        let rx = transport::accept(listener, multiplex);

        Ok(Server {
            external: external,
            port: port,
            rx: rx,
        })
    }

    /// Returns the address of the socket in the form of `(hostname, port)`.
    pub fn external_addr(&self) -> (&str, u16) {
        (&*self.external, self.port)
    }
}

impl<N: Name> Stream for Server<N> {
    type Item = (Outgoing, Incoming<N>);
    type Error = io::Error;

    fn poll(&mut self) -> Poll<Option<Self::Item>, Self::Error> {
        transport::poll_receiver(&mut self.rx)
    }
}

/// creates a new request dispatcher/multiplexer for each accepted tcp socket
fn multiplex<N: Name>(stream: TcpStream) -> io::Result<(Outgoing, Incoming<N>)> {
    let local = stream.local_addr()?;
    let remote = stream.peer_addr()?;

    let instream = stream.try_clone()?;
    let outstream = stream;

    let (incoming_tx, incoming_rx) = mpsc::unbounded();
    let pending = Arc::new(Mutex::new(HashMap::new()));
    let sender = transport::Sender::new(outstream, local, remote);

    let resolver = Resolver {
        pending: pending.clone(),
        sender: sender.clone(),
        incoming: incoming_tx,
        stream: instream,
    };

    let outgoing = Outgoing {
        next_id: Arc::new(AtomicUsize::new(0)),
        pending: pending,
        sender: sender,
    };

    let incoming = Incoming { rx: incoming_rx };

    resolver.dispatch();

    Ok((outgoing, incoming))
}

impl Network {
    /// Connects to an remote procedure call server.
    ///
    /// Please refer to the [`rpc`](rpc/index.html) module level documentation for more details.
    pub fn client<N: Name, E: ToSocketAddrs>(&self,
                                    endpoint: E)
                                    -> io::Result<(Outgoing, Incoming<N>)> {
        multiplex(TcpStream::connect(endpoint)?)
    }

    /// Creates a new remote procedure call server.
    ///
    /// If the `port` is not specified, a random ephemerial port is chosen.
    /// Please refer to the [`rpc`](rpc/index.html) module level documentation for more details.
    pub fn server<N: Name, P: Into<Option<u16>>>(&self, port: P) -> io::Result<Server<N>> {
        Server::new(self.clone(), port.into().unwrap_or(0))
    }
}

fn _assert() {
    enum E {A}
    impl Name for E {
        type Discriminant = u8;
        fn discriminant(&self) -> u8 {0}
        fn from_discriminant(_: &u8) -> Option<E> {None}
    }
    fn _is_send<T: Send>() {}
    _is_send::<Incoming<E>>();
    _is_send::<Outgoing>();
    _is_send::<Server<E>>();
}